$E(n)$－local Greek letter elements $\alpha_{t / a}^{(n)}$ for $2 p-1=n^{2}$

Ryo KATO＊

Let $E(n)$ be the nth Johnson－Wilson spectrum at a prime number p ．In this note，we investigate Greerk letter elements of the type $\alpha_{t / a}^{(n)}$ in the homotopy groups $\pi_{*}\left(L_{n} S^{0}\right)$ of the $E(n)$－localized sphere spectrum for $2 p-1=n^{2}$ ．In particular， at $(p, n)=(5,3)$ ，the main theorem implies that if $125 \nmid t$ ，then any $\gamma_{t / a}\left(=\alpha_{t / a}^{(3)}\right)$ exists in $\pi_{*}\left(L_{3} S^{0}\right)$ ，and if $125 \mid t$ ，then $\gamma_{t / a}$ for $a \leq 26$ exists in $\pi_{*}\left(L_{3} S^{0}\right)$.

1．Introduction

Let p be a prime number and \mathcal{S}_{p} the stable homotopy category of p－local spectra．The nth Johnson－Wilson spectrum $E(n)$ rep－ resents the homology theory $E(n)_{*}(-)$ ，whose coefficient algebra is

$$
E(n)_{*}=\mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right] \quad \text { with } \quad\left|v_{i}\right|=2\left(p^{i}-1\right) .
$$

For the Bousfield localization functor $L_{n}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ with respect to $E(n)$ ，we denote $\mathcal{L}_{n}=L_{n}\left(\mathcal{S}_{p}\right)$ ．Since $L_{n-1}\left(\mathcal{L}_{n}\right)=\mathcal{L}_{n-1}$ ，we have the universal homomorphism

$$
u_{X}: \pi_{*}(X) \rightarrow \lim _{n} \pi_{*}\left(L_{n} X\right)
$$

for a spectrum X ．By the chromatic convergence theorem of Hopkins－Ravenel（cf．［3，Th．7．5．7］），if X is a finite spectrum， then the homomorphism u_{X} is an isomorphism．In particular， $\pi_{*}\left(S^{0}\right)=\lim _{n} \pi_{*}\left(L_{n} S^{0}\right)$ where S^{0} is the sphere spectrum．For a spectrum X ，we have the $E(n)$－based Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{E(n)_{*}(E(n))}^{s, t}\left(E(n)_{*}, E(n)_{*}(X)\right) \Rightarrow \pi_{t-s}\left(L_{n} X\right) .
$$

Hereafter，we denote by $E(n)_{r}^{s, t}(X)$ the E_{r}－term of the spectral sequence．For an $E(n)_{*}(E(n))$－comodule M ，we abbreviate

$$
H^{s, t} M=\operatorname{Ext}_{E(n)_{*}(E(n))}^{s, t}\left(E(n)_{*}, M\right) \quad \text { and } \quad H^{s} M=\bigoplus_{t} H^{s, t} M
$$

For $k<n$ ，we let I_{k} be the ideal $\left(p, v_{1}, \ldots, v_{k-1}\right)$ of $E(n)_{*}$ ，and

$$
N_{k}=E(n)_{*} / I_{k} .
$$

We also put $I_{n}^{(a)}=\left(I_{n-1}, v_{n-1}^{a}\right)$ ．The short exact sequences

$$
0 \rightarrow N_{n-1} \xrightarrow{v_{n-1}^{a}} N_{n-1} \rightarrow E(n)_{*} / I_{n}^{(a)} \rightarrow 0
$$

and

$$
0 \rightarrow N_{k} \xrightarrow{v_{k}} N_{k} \rightarrow N_{k+1} \rightarrow 0
$$

give rise to the connecting homomorphisms
$\delta_{a}: H^{s} E(n)_{*} / I_{n}^{(a)} \rightarrow H^{s+1} N_{n-1} \quad$ and $\quad \partial_{k}: H^{s} N_{k+1} \rightarrow H^{s+1} N_{k}$, respectively．If v_{n}^{t} is in $H^{0} E(n)_{*} / I_{n}^{(a)}$ ，then we define

$$
\bar{\alpha}_{t / a}^{(n)}=\partial_{0} \cdots \partial_{n-2} \delta_{a}\left(v_{n}^{t}\right) \in H^{n} N_{0}=E(n)_{2}^{n, *}\left(S^{0}\right) .
$$

Traditionally，for a small n ，we use the nth Greek letter instead of $\alpha^{(n)}$ ，that is，
$\bar{\alpha}_{t / a}=\bar{\alpha}_{t / a}^{(1)}, \quad \bar{\beta}_{t / a}=\bar{\alpha}_{t / a}^{(2)}, \quad \bar{\gamma}_{t / a}=\bar{\alpha}_{t / a}^{(3)}, \quad \bar{\delta}_{t / a}=\bar{\alpha}_{t / a}^{(4)}, \quad \bar{\varepsilon}_{t / a}=\bar{\alpha}_{t / a}^{(5)}$,
If $\bar{\alpha}_{t / a}^{(n)}$ converges to an element $x \in \pi_{*}\left(L_{n} S^{0}\right)$ ，we denote it by $\alpha_{t / a}^{(n)}$ ．For $p>2$ and $n>2$ ，by［2，Th．5．10］，the element $\bar{\alpha}_{t / a}^{(n)}(t \neq 0)$ belongs to $E(n)_{2}^{n . *}\left(S^{0}\right)$ if and only if （1）

$$
a \leq a(t)= \begin{cases}1 & v_{p}(t)=0, \\ p a(t / p) & v_{p}(t)=1 \text { or } 0<v_{p}(t) \not \equiv 1 \bmod (n-1), \\ p a(t / p)+p-1 & 1<v_{p}(t) \equiv 1 \quad \bmod (n-1) .\end{cases}
$$

Here，$v_{p}(t)=\max \left\{i \in \mathbb{Z}: p^{i} \mid t\right\}$ ．We immediately obtain the following theorem from the work of Shimomura－Yokotani［5］：

Theorem 2 （Corollary of［5，Th．1．2］）If $2 p \geq n^{2}+n$ ，then any $\bar{\alpha}_{t / a}^{(n)} \in E(n)_{2}^{n, *}\left(S^{0}\right)$ converges to $\alpha_{t / a}^{(n)}$ of $\pi_{*}\left(L_{n} S^{0}\right)$ ．

We recall that the Smith－Toda spectrum $V(k)$ satisfies

$$
E(n)_{*}(V(k))=E(n)_{*} / I_{k+1} .
$$

In this note，we show the following：
Theorem 3 Assume that
－ $2 p-1=n^{2}$ ，
－$V(n-2)$ exists，and

[^0]－$V(n-2)$ admits a v_{n-1}－self map $v_{n-1}^{e}: \Sigma^{e\left|v_{n-1}\right|} V(n-2) \rightarrow$ $V(n-2)$ ．

Then，the element $\alpha_{t / a}^{(n)}(t \neq 0)$ exists in $\pi_{*}\left(L_{n} S^{0}\right)$ if

$$
\begin{aligned}
a & =k e \\
& \leq \min \left\{a(t), 1+\frac{p^{2}\left(p^{n-2}-1\right)}{p^{p-1}}\right\} \\
& = \begin{cases}p^{v p}(t) & v_{p}(t)<n \\
1+\frac{p^{2}\left(p^{n-2}-1\right)}{p-1} & v_{p}(t) \geq n\end{cases}
\end{aligned}
$$

for $k \geq 1$ ．
For example，the following cases satisfy $2 p-1=n^{2}$ ：

$$
(p, n)=(5,3),(13,5),(41,9), \ldots .
$$

We recall that，at $p=5$ ，the spectrum $V(1)$ exists and it ad－ mits $v_{2}: \Sigma^{48} V(1) \rightarrow V(1)[6$, Th．1．4］．Thus，Theorem 3 at $(p, n)=(5,3)$ is

Corollary 4 At $p=5$ ，the element $\gamma_{t / a}$ exists in $\pi_{*}\left(L_{3} S^{0}\right)$ if

$$
a \leq \min \{a(t), 26\}= \begin{cases}5^{v_{5}(t)} & v_{5}(t)<3 \\ 26 & v_{5}(t) \geq 3\end{cases}
$$

Furthermore，in the last section，we consider the case for $(p, n)=(13,5)$ ．

2．Proof of Theorem 3

We assume that the Smith－Toda spectrum $V(n-2)$ exists and the spectrum admits a v_{n-1}－self map

$$
v_{n-1}^{e}: \Sigma^{e\left|v_{n-1}\right|} V(n-2) \rightarrow V(n-2)
$$

By the periodicity theorem of Hopkins－Smith（cf．［3，Chapter 6］），the self map v_{n-1}^{e} exists if e is a sufficiently large．Let

$$
q=2 p-2,
$$

and we put $I_{n-1}=\left(p, v_{1}, \ldots, v_{n-2}\right) \subset E(n)_{*}$ and $I_{n}^{(a)}=$ $\left(I_{n-1}, v_{n-1}^{a}\right) \subset E(n)_{*}$ ．We also denote $K(n)_{*}=E(n)_{*} / I_{n}^{(1)}=$ $\mathbb{Z} / p\left[v_{n}^{ \pm 1}\right]$ ．A spectrum $V_{k e}$ is defined by the cofiber sequence
$\Sigma^{k e\left|v_{n-1}\right|} V(n-2) \xrightarrow{\left(v_{n-1}^{e}\right)^{k}} V(n-2) \rightarrow V_{k e} \rightarrow \Sigma^{k e\left|v_{n-1}\right|+1} V(n-2)$, and $E(n)_{*}\left(V_{k e}\right)=E(n)_{*} / I_{n}^{(k e)}$ ．

Lemma 5 Assume that $q+1=n^{2}$ ．If $H^{q+1, t} E(n)_{*} / I_{n}^{(a)} \neq 0$ ，then $t \equiv c\left|v_{2}\right| \bmod \left(\left|v_{3}\right|\right)$ with $0 \leq c<a$ ．

Proof．We recall that $H^{0} E(n)_{*} / I_{n}^{(1)}=H^{0} K(n)_{*}=K(n)_{*}$ ．Since the condition $q+1=n^{2}$ implies $(p-1) \nmid n$ ，the Poincare du－ ality implies $H^{q+1} E(n)_{*} / I_{n}^{(1)}=K(n)_{*}\{g\}$ with $|g|=0$ ．Hence， if $H^{q+1, t} E(n)_{*} / I_{n}^{(1)} \neq 0$ ，then $t \equiv 0 \bmod \left(\left|v_{n}\right|\right)$ ，and we see the claim at $a=1$ ．

We prove the lemma by an induction for a ．Assume that
If $H^{q+1, t} E(n)_{*} / I_{n}^{(a-1)} \neq 0$ ，then $t \equiv c\left|v_{n-1}\right| \quad \bmod \left(\left|v_{n}\right|\right)$ with $0 \leq c<a-1$ ．
We consider the exact sequence

$$
\begin{array}{rlll}
H^{q+1, t-\left|v_{n-1}\right|} E(n)_{*} / I_{n}^{(a-1)} & \xrightarrow{v_{n-1}} & H^{q+1, t} E(n)_{*} / I_{n}^{(a)} \\
& \rightarrow & H^{q+1, t} E(n)_{*} / I_{n}^{(1)} .
\end{array}
$$

If $H^{q+1, t} E(n)_{*} / I_{n}^{(a)} \neq 0$ ，then $H^{q+1, t-\left|v_{n-1}\right|} E(n)_{*} / I_{n}^{(a-1)} \neq 0$ or $H^{q+1, t} E(n)_{*} / I_{n}^{(1)} \neq 0$ ．Therefore，by the assumption，$t-\left|v_{n-1}\right| \equiv$ $c\left|v_{n-1}\right| \bmod \left(\left|v_{n}\right|\right)$ with $0 \leq c<a-1$ ，or $t \equiv 0 \bmod \left(\left|v_{3}\right|\right)$ ． Hence we have $t \equiv c\left|v_{n-1}\right| \bmod \left(\left|v_{n}\right|\right)$ with $0 \leq c<a$ ．\square

Proof of Theorem 3．If $k e \leq a(t)$ where $a(t)$ is in（1），then v_{n}^{t} is in $E(n)_{2}^{0, t\left|v_{n}\right|}\left(V_{k e}\right)$ ．By the Morava vanishing theorem，the assumption $q+1=2 p-1=n^{2}$ implies that we have only possibly nonzero differential

$$
d_{q+1}: E(n)_{2}^{0, t\left|v_{n}\right|}\left(V_{k e}\right) \rightarrow E(n)_{2}^{q+1, q+t\left|v_{n}\right|}\left(V_{k e}\right)
$$

Put

$$
e(i)=\frac{p^{i}-1}{p-1}
$$

and then $\left|v_{i}\right|=e(i) q$ ．By Lemma 5，if $E(n)_{2}^{q+1, q+t\left|v_{n}\right|}\left(V_{k e}\right) \neq 0$ ， then $q+t\left|v_{n}\right| \equiv c\left|v_{n-1}\right| \bmod \left(\left|v_{n}\right|\right)$ with $0 \leq c<k e$ ．This im－ plies $1 \equiv c e(n-1) \bmod (e(n))$ ．Since $p e(n-1)=e(n)-1$ ，we have
$c \equiv-c(e(n)-1)=-c p e(n-1) \equiv-p \equiv e(n)-p \bmod (e(n))$.
However，the assumption $a=k e \leq 1+p^{2}\left(p^{n-2}-1\right) /(p-1)=$ $e(n)-p$ implies that we have no c such that $0 \leq c<k e$ and $c \equiv e(n)-p \bmod (e(n))$ ．Therefore，$E(n)_{2}^{q+1, q+t\left|v_{n}\right|}\left(V_{k e}\right)=0$ ， and so v_{n}^{t} survives to $v \in \pi_{*}\left(L_{n} V_{k e}\right)$ ．Let J denote the collaps－ ing map from $V_{k e}$ to the top cell．By the geometric boundary theorem，the composite $J \circ v$ is $\alpha_{t / a}^{(n)}$ ．

Remark 6 In the case for $a=2+p^{2}\left(p^{n-2}-1\right) /(p-1)=e(n)-p+$ 1 ，we cannot prove the existence of $\alpha_{t / e(n)-p+1}^{(n)}$ in the way of this note．Indeed，if $V_{e(n)-p+1}$ exists and $v_{n}^{t} \in E(n)_{2}^{0, t\left|v_{n}\right|}\left(V_{e(n)-p+1}\right)$ ， then

$$
d_{q+1}\left(v_{n}^{t}\right) \in E(n)_{2}^{q+1, t\left|v_{n}\right|+q}\left(V_{e(n)-p+1}\right) \ni v_{n-1}^{e(n)-p} v_{n}^{t-e(n-1)+1} g .
$$

Therefore，we don＇t know whether or not $d_{q+1}\left(v_{n}^{t}\right)=0$ ．

3．Remarks in the case for $(p, n)=(13,5)$

By［6，Th．1．1］，at $(p, n)=(13,5)$ ，the spectrum $V(n-2)=$ $V(3)$ exists．By the periodicity theorem of Hopkins－Smith（ $c f$ ， ［3，Chapter 6］），$V(3)$ admits a v_{4}－self map

$$
v_{4}^{e_{4}}: \Sigma^{57120 e_{4}} V(3) \rightarrow V(3)
$$

for a sufficiently large e_{4} ．Therefore，Theorem 3 implies that

Corollary 7 At $p=13$ ，the element $\varepsilon_{t / a}$ exists in $\pi_{*}\left(L_{5} S^{0}\right)$ if

$$
a=k e_{4} \leq \min \{a(t), 30928\}= \begin{cases}13^{v_{13}(t)} & v_{13}(t)<5 \\ 30928 & v_{13}(t) \geq 5\end{cases}
$$

for $k \geq 1$ ．
Conjecture $8 \quad e_{4}=1$ ，that is，the spectrum $V(3)$ admits

$$
v_{4}: \Sigma^{57120} V(3) \rightarrow V(3)
$$

at $p=13$ ．

Remark that，by［1，Th．1．3］，we know that $V(7)$ doesn＇t exist at $p=13$ ．Even if Conjecture 8 is true，we have no contradiction to this fact．

Corollary 9 If Conjecture 8 holds，then，at $p=13$ ，the element $\varepsilon_{t / a}$ exists in $\pi_{*}\left(L_{5} S^{0}\right)$ if

$$
a \leq \min \{a(t), 30928\}= \begin{cases}13^{v_{13}(t)} & v_{13}(t)<5 \\ 30928 & v_{13}(t) \geq 5\end{cases}
$$

References

［1］L．S．Nave，The Smith－Toda complex $V((p+1) / 2)$ does not exist，Ann．of Math． 171 （2010），491－509．
［2］H．R．Miller，D．C．Ravenel，W．S．Wilson，Periodic phenomena in the Adams－Novikov spectral sequence，Ann．of Math． 106 （1977），469－516．
［3］D．C．Ravenel，Nilpotence and periodicity in stable homotopy theory，Ann．of Math．Studies 128，Princeton Univ．Press 1992.
［4］D．C．Ravenel，Complex cobordism and stable homotopy groups of spheres，Second edition，AMS Chelsea Publishing，Providence RI． 2004.
［5］K．Shimomura，M．Yokotani，Existence of the Greek letter elements in the stable homotopy groups of $E(n)_{*}$－localized spheres， Publ．Res．Inst．Math．Sci． 30 （1994），139－150．
［6］H．Toda，On spectra realizing exterior parts of the Steenrod algebra，Topology 10 （1971），53－65．

[^0]: Received Oct．1， 2022
 ＊Faculty of Fundamental Science，National Institute of Technology（KOSEN），Niihama College，Niihama，792－8580，Japan

