E(n)-local Greek letter elements 0‘;:(73 for 2p — 1 = n?

Ryo KATO*

Let E(n) be the nth Johnson-Wilson spectrum at a prime number p. In this note, we investigate Greerk letter elements

of the type a[(/"a) in the homotopy groups 7. (L,S°) of the E(n)-localized sphere spectrum for 2p — 1 = n2. In particular,

at (p,n) = (5,3), the main theorem implies that if 125 1 ¢, then any y,/, (:

Yt/a for a < 26 exists in 7, (L359).

1. Introduction

Let p be a prime number and S, the stable homotopy category
of p-local spectra. The nth Johnson-Wilson spectrum E(n) rep-
resents the homology theory E(n).(—), whose coefficient algebra
is
loil = 2(p" = 1).

E(n). = Zp)[o1, .. Up1, i) with

For the Bousfield localization functor L, : S, — S, with respect
to E(n), we denote L, = L,(S,). Since L,_1(Ly) = Lp-1, we

have the universal homomorphism
ux : m(X) — lim 7z, (L, X)
n

for a spectrum X. By the chromatic convergence theorem of
Hopkins-Ravenel (c¢f. [3, Th. 7.5.7]), if X is a finite spectrum,
then the homomorphism uy is an isomorphism. In particular,
7,.(8%) = lim,, 7, (L,S°) where S° is the sphere spectrum. For a
spectrum X, we have the E(n)-based Adams spectral sequence

= Ext%!

S,t
E, E(n). (E(n))

(E(n)+, E(n)«(X)) = mp—s(LnX).

Hereafter, we denote by E(n)>'(X) the E,-term of the spectral
sequence. For an E(n).(E(n))-comodule M, we abbreviate

H*'M = Exty

S 5 (E) M) and HOM = (D M.
t

For k < n, we let I be the ideal (p, vy, ...,vk—1) of E(n)., and
Ni = E(n)./I.

We also put I,(,“) = (In-1,05_,). The short exact sequences

y
0= Np1 =5 Noy = E(n). /1LY — 0

(3)

at/a) exists in 7, (L3S%), and if 125 | t, then

and
o)
0—)Nk—k>Nk—>Nk+1—>0

give rise to the connecting homomorphisms
8ot HE(n),/I\ — H*'N,_; and ¢: H' Ny — H'INg,

respectively. If of, is in HOE(n)*/I,(,a), then we define

a;;g = On284(0}) € H"Ny = E(m)>"(5°).
Traditionally, for a small n, we use the nth Greek letter instead

of ™ that is,

- _=() 7 _=2 = _=03 T _=-@4 = _=0
Utfa =@y Bria= e Vija =% 01/a =&y Etja = &))p

For p > 2 and n > 2, by [2, Th. 5.10], the element
(t # 0) belongs to E(n)g'*(SO) if and only if

g
—(n)
at/a

(D
1 vp(£) =0,

a < a(t) =qpa(t/p) vp(t)=lor0<v,(t) #1 mod (n-1),
pa(t/p)+p—-1 1<v,(t)=1 mod (n-1).

Here, v, (t) = max{i € Z: p' | t}. We immediately obtain the
following theorem from the work of Shimomura-Yokotani [5]:

Theorem 2 (Corollary of [5, Th. 1.2])

—(n) (n)
at/a t/a

If 2p > n?+n, then any

€ E(n)y” (8% converges to a'"” of m,(L,S°).

We recall that the Smith-Toda spectrum V (k) satisfies
E(n).(V(k)) = E(n)+/Iis1-

In this note, we show the following:
Theorem 3 Assume that

s 2p-1=n%
* V(n-2)exists, and
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e V(n-2)admits av,_;-self map oy _, : selon1ly(n-2) -
V(n-2).

Then, the element af/"z (t # 0) exists in 7, (L,S°) if

ke
min {a(t), 1+ ‘%}2_')}

pr(t)
1+ PAp" -1

p-1

IA

vp(t) <n
vp(t) 2 n

fork > 1.
For example, the following cases satisfy 2p — 1 = n?:
(p,n) =(5,3), (13,5), (41,9), ....

We recall that, at p = 5, the spectrum V(1) exists and it ad-
mits v,: ¥V (1) — V(1) [6, Th. 1.4]. Thus, Theorem 3 at
(p,n) =(5,3)1is

Corollary 4 At p = 5, the element y;, exists in 7. (L3S?) if

5v(2)
26

vs(t) <3,

a < min{a(t),26} = { vs(t) > 3

Furthermore, in the last section, we consider the case for
(p.n) = (13,5).

2. Proof of Theorem 3

We assume that the Smith-Toda spectrum V (n — 2) exists and

the spectrum admits a v,,_;-self map
oyt selenly(n—2) 5 V(n-2).

By the periodicity theorem of Hopkins-Smith (¢f. [3, Chapter
6]), the self map v;,_, exists if e is a sufficiently large. Let

q=2p-2,

and we put I,-; = (p,uy,...,0,-2) C E(n), and I,(,“)
(In-1,v;_,) C E(n).. We also denote K(n). = E(n)*/I,gl)
Z/p[vE!]. A spectrum Vi, is defined by the cofiber sequence

Dt

(o6
skelon-ily (n-2) 2L V(n=2) — Ve — selnitly (n-2),

and E(n). (Vi) = E(n). /1.

Lemma5 Assume that g+1 = n?. If HI*'*E(n),/I\” # 0, then

t = clop] mod (Juz|) with0 < ¢ < a.

Proof. We recall that HOE(n)*/I,El) = H°K(n), = K(n).. Since
the condition ¢ + 1 = n? implies (p — 1) ¢ n, the Poincare du-
ality implies Hq“E(n)*/I,(,]) = K(n).{g} with |g| = 0. Hence,
if H*V E(n), /I # 0, then t = 0 mod (Jua|), and we see the

claimata = 1.
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We prove the lemma by an induction for a. Assume that

If H#*E(n). /1Y #0, then t = clo,_;| mod (Jon|) WithO < c < a— 1.

We consider the exact sequence

Un-1
—_—

H* M E(n), /1,"
H#YE(n). /15"

Hatht=vn-1 ‘E(n)*/I,(I“_l)

—

If H*VE(n), /I # 0, then HI*t=1on-11E(n), /1Y % 0 or
Hq”’tE(n)*/I,(,l) # 0. Therefore, by the assumption, ¢t — |v,,—| =
clop—1| mod (Joy]) withO < ¢ <a—-1,0ort =0 mod (|v3]).
Hence we have t = c|v,—1| mod (Ju,|) withO < ¢ <a. O

Proof of Theorem 3. If ke < a(t) where a(t) is in (1), then
0,¢|v,
2

assumption g+1 = 2p—1 = n? implies that we have only possibly

ol is in E(n) ‘(Vke)‘ By the Morava vanishing theorem, the

nonzero differential

dgnr s E(m)y"™!

Otlonl (Vig) — E(m)TH 01l (7).

Put )
p-1

e(i) = P

and then |o;| = e(i)q. By Lemma 5, if E(n)'zﬁl’q”lv"‘(Vke) + 0,
then q + t|v,| = clv,—1| mod (|o,|) with 0 < ¢ < ke. This im-
plies 1 = ce(n—1) mod (e(n)). Since pe(n—1) = e(n) — 1, we
have

c=—c(e(n)—1)=—-cpe(n—1)=-p=e(n)—p mod (e(n)).

However, the assumption a = ke < 1 +p?(p" 2 - 1)/(p—1) =
e(n) — p implies that we have no ¢ such that 0 < ¢ < ke and
c =e(n) —p mod (e(n)). Therefore, E(n)‘zﬁl’qﬂlu"‘(vke) =0,
and so o}, survives to v € m,(L,Vi.). Let J denote the collaps-

ing map from V. to the top cell. By the geometric boundary

(n)

=

theorem, the composite J o v is
Remark 6 Inthecase fora = 2+p*(p"2—1)/(p—1) = e(n)—p+
(n)

t/e(n)—p+1
note. Indeed, if Ve(n)—p+1 exists and o}, € E(n)g’t‘v"l(Ve(,,)_pH),

then

1, we cannot prove the existence of a in the way of this

1Lt|o, - - —1)+1
dger (08) € E(m)T ™M1V, 1) 3 02 P Mg,

n-1

Therefore, we don’t know whether or not dg. (vf,) = 0.

3. Remarksin the case for (p,n) = (13,5)

By [6, Th. 1.1], at (p,n) = (13,5), the spectrum V(n —2) =
V(3) exists. By the periodicity theorem of Hopkins-Smith (cf,
[3, Chapter 6]), V(3) admits a v4-self map

vt 27104y (3) - v (3)

for a sufficiently large e4. Therefore, Theorem 3 implies that



Corollary 7 At p = 13, the element &/, exists in 7. (LsS°) if

13730 viz(t) <5

= kes < mi t),30928} =

fork > 1.

Conjecture 8 e4 = 1, that is, the spectrum V (3) admits
o 27120V7(3) 5 V(3)

atp = 13.
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