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Let 𝐸 (𝑛) be the 𝑛th Johnson-Wilson spectrum at a prime number 𝑝. In this note, we investigate Greerk letter elements
of the type 𝛼 (𝑛)

𝑡/𝑎 in the homotopy groups 𝜋∗ (𝐿𝑛𝑆0) of the 𝐸 (𝑛)-localized sphere spectrum for 2𝑝 − 1 = 𝑛2. In particular,

at (𝑝, 𝑛) = (5, 3), the main theorem implies that if 125 ∤ 𝑡 , then any 𝛾𝑡/𝑎
(
= 𝛼 (3)

𝑡/𝑎

)
exists in 𝜋∗ (𝐿3𝑆

0), and if 125 | 𝑡 , then
𝛾𝑡/𝑎 for 𝑎 ≤ 26 exists in 𝜋∗ (𝐿3𝑆

0).

1. Introduction
Let 𝑝 be a prime number and S𝑝 the stable homotopy category

of 𝑝-local spectra. The 𝑛th Johnson-Wilson spectrum 𝐸 (𝑛) rep-
resents the homology theory 𝐸 (𝑛)∗ (−), whose coefficient algebra
is

𝐸 (𝑛)∗ = Z(𝑝) [𝑣1, . . . , 𝑣𝑛−1, 𝑣
±1
𝑛 ] with |𝑣𝑖 | = 2(𝑝𝑖 − 1).

For the Bousfield localization functor 𝐿𝑛 : S𝑝 → S𝑝 with respect
to 𝐸 (𝑛), we denote L𝑛 = 𝐿𝑛 (S𝑝 ). Since 𝐿𝑛−1 (L𝑛) = L𝑛−1, we
have the universal homomorphism

𝑢𝑋 : 𝜋∗ (𝑋 ) → lim
𝑛
𝜋∗ (𝐿𝑛𝑋 )

for a spectrum 𝑋 . By the chromatic convergence theorem of
Hopkins-Ravenel (cf. [3, Th. 7.5.7]), if 𝑋 is a finite spectrum,
then the homomorphism 𝑢𝑋 is an isomorphism. In particular,
𝜋∗ (𝑆0) = lim𝑛 𝜋∗ (𝐿𝑛𝑆0) where 𝑆0 is the sphere spectrum. For a
spectrum 𝑋 , we have the 𝐸 (𝑛)-based Adams spectral sequence

𝐸𝑠,𝑡2 = Ext𝑠,𝑡
𝐸 (𝑛)∗ (𝐸 (𝑛)) (𝐸 (𝑛)∗, 𝐸 (𝑛)∗ (𝑋 )) ⇒ 𝜋𝑡−𝑠 (𝐿𝑛𝑋 ).

Hereafter, we denote by 𝐸 (𝑛)𝑠,𝑡𝑟 (𝑋 ) the 𝐸𝑟 -term of the spectral
sequence. For an 𝐸 (𝑛)∗ (𝐸 (𝑛))-comodule 𝑀 , we abbreviate

𝐻𝑠,𝑡𝑀 = Ext𝑠,𝑡
𝐸 (𝑛)∗ (𝐸 (𝑛)) (𝐸 (𝑛)∗, 𝑀) and 𝐻𝑠𝑀 =

⊕
𝑡

𝐻𝑠,𝑡𝑀.

For 𝑘 < 𝑛, we let 𝐼𝑘 be the ideal (𝑝, 𝑣1, . . . , 𝑣𝑘−1) of 𝐸 (𝑛)∗, and

𝑁𝑘 = 𝐸 (𝑛)∗/𝐼𝑘 .

We also put 𝐼 (𝑎)𝑛 = (𝐼𝑛−1, 𝑣
𝑎
𝑛−1). The short exact sequences

0 → 𝑁𝑛−1
𝑣𝑎𝑛−1−−−→ 𝑁𝑛−1 → 𝐸 (𝑛)∗/𝐼 (𝑎)𝑛 → 0

and
0 → 𝑁𝑘

𝑣𝑘−→ 𝑁𝑘 → 𝑁𝑘+1 → 0

give rise to the connecting homomorphisms

𝛿𝑎 : 𝐻𝑠𝐸 (𝑛)∗/𝐼 (𝑎)𝑛 → 𝐻𝑠+1𝑁𝑛−1 and 𝜕𝑘 : 𝐻𝑠𝑁𝑘+1 → 𝐻𝑠+1𝑁𝑘 ,

respectively. If 𝑣𝑡𝑛 is in 𝐻 0𝐸 (𝑛)∗/𝐼 (𝑎)𝑛 , then we define

𝛼 (𝑛)
𝑡/𝑎 = 𝜕0 · · · 𝜕𝑛−2𝛿𝑎 (𝑣𝑡𝑛) ∈ 𝐻𝑛𝑁0 = 𝐸 (𝑛)𝑛,∗2 (𝑆0).

Traditionally, for a small 𝑛, we use the 𝑛th Greek letter instead
of 𝛼 (𝑛) , that is,

𝛼𝑡/𝑎 = 𝛼 (1)
𝑡/𝑎, 𝛽𝑡/𝑎 = 𝛼 (2)

𝑡/𝑎, 𝛾𝑡/𝑎 = 𝛼 (3)
𝑡/𝑎, 𝛿𝑡/𝑎 = 𝛼 (4)

𝑡/𝑎, 𝜀𝑡/𝑎 = 𝛼 (5)
𝑡/𝑎, . . . .

If 𝛼 (𝑛)
𝑡/𝑎 converges to an element 𝑥 ∈ 𝜋∗ (𝐿𝑛𝑆0), we denote it by

𝛼 (𝑛)
𝑡/𝑎 . For 𝑝 > 2 and 𝑛 > 2, by [2, Th. 5.10], the element
𝛼 (𝑛)
𝑡/𝑎 (𝑡 ≠ 0) belongs to 𝐸 (𝑛)𝑛.∗2 (𝑆0) if and only if

(1)

𝑎 ≤ 𝑎(𝑡) =


1 𝜈𝑝 (𝑡) = 0,
𝑝𝑎(𝑡/𝑝) 𝜈𝑝 (𝑡) = 1 or 0 < 𝜈𝑝 (𝑡) . 1 mod (𝑛 − 1),
𝑝𝑎(𝑡/𝑝) + 𝑝 − 1 1 < 𝜈𝑝 (𝑡) ≡ 1 mod (𝑛 − 1) .

Here, 𝜈𝑝 (𝑡) = max{𝑖 ∈ Z : 𝑝𝑖 | 𝑡}. We immediately obtain the
following theorem from the work of Shimomura-Yokotani [5]:

Theorem 2（Corollary of [5, Th. 1.2]） If 2𝑝 ≥ 𝑛2 +𝑛, then any
𝛼 (𝑛)
𝑡/𝑎 ∈ 𝐸 (𝑛)𝑛,∗2 (𝑆0) converges to 𝛼 (𝑛)

𝑡/𝑎 of 𝜋∗ (𝐿𝑛𝑆0).

We recall that the Smith-Toda spectrum 𝑉 (𝑘) satisfies

𝐸 (𝑛)∗ (𝑉 (𝑘)) = 𝐸 (𝑛)∗/𝐼𝑘+1.

In this note, we show the following:

Theorem 3 Assume that

• 2𝑝 − 1 = 𝑛2,
• 𝑉 (𝑛 − 2) exists, and
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• 𝑉 (𝑛−2) admits a 𝑣𝑛−1-self map 𝑣𝑒𝑛−1 : Σ𝑒 |𝑣𝑛−1 |𝑉 (𝑛−2) →
𝑉 (𝑛 − 2).

Then, the element 𝛼 (𝑛)
𝑡/𝑎 (𝑡 ≠ 0) exists in 𝜋∗ (𝐿𝑛𝑆0) if

𝑎 = 𝑘𝑒

≤ min
{
𝑎(𝑡), 1 + 𝑝2 (𝑝𝑛−2−1)

𝑝−1

}
=

{
𝑝𝜈𝑝 (𝑡 ) 𝜈𝑝 (𝑡) < 𝑛
1 + 𝑝2 (𝑝𝑛−2−1)

𝑝−1 𝜈𝑝 (𝑡) ≥ 𝑛

for 𝑘 ≥ 1.

For example, the following cases satisfy 2𝑝 − 1 = 𝑛2:

(𝑝, 𝑛) = (5, 3), (13, 5), (41, 9), . . . .

We recall that, at 𝑝 = 5, the spectrum 𝑉 (1) exists and it ad-
mits 𝑣2 : Σ48𝑉 (1) → 𝑉 (1) [6, Th. 1.4]. Thus, Theorem 3 at
(𝑝, 𝑛) = (5, 3) is

Corollary 4 At 𝑝 = 5, the element 𝛾𝑡/𝑎 exists in 𝜋∗ (𝐿3𝑆
0) if

𝑎 ≤ min{𝑎(𝑡), 26} =
{

5𝜈5 (𝑡 ) 𝜈5 (𝑡) < 3,
26 𝜈5 (𝑡) ≥ 3.

Furthermore, in the last section, we consider the case for
(𝑝, 𝑛) = (13, 5).

2. Proof of Theorem 3
We assume that the Smith-Toda spectrum 𝑉 (𝑛 − 2) exists and

the spectrum admits a 𝑣𝑛−1-self map

𝑣𝑒𝑛−1 : Σ𝑒 |𝑣𝑛−1 |𝑉 (𝑛 − 2) → 𝑉 (𝑛 − 2).

By the periodicity theorem of Hopkins-Smith (cf. [3, Chapter
6]), the self map 𝑣𝑒𝑛−1 exists if 𝑒 is a sufficiently large. Let

𝑞 = 2𝑝 − 2,

and we put 𝐼𝑛−1 = (𝑝, 𝑣1, . . . , 𝑣𝑛−2) ⊂ 𝐸 (𝑛)∗ and 𝐼 (𝑎)𝑛 =

(𝐼𝑛−1, 𝑣
𝑎
𝑛−1) ⊂ 𝐸 (𝑛)∗. We also denote 𝐾 (𝑛)∗ = 𝐸 (𝑛)∗/𝐼 (1)𝑛 =

Z/𝑝 [𝑣±1
𝑛 ]. A spectrum 𝑉𝑘𝑒 is defined by the cofiber sequence

Σ𝑘𝑒 |𝑣𝑛−1 |𝑉 (𝑛−2)
(𝑣𝑒𝑛−1)

𝑘

−−−−−−→ 𝑉 (𝑛−2) → 𝑉𝑘𝑒 → Σ𝑘𝑒 |𝑣𝑛−1 |+1𝑉 (𝑛−2),

and 𝐸 (𝑛)∗ (𝑉𝑘𝑒 ) = 𝐸 (𝑛)∗/𝐼 (𝑘𝑒)𝑛 .

Lemma 5 Assume that 𝑞+1 = 𝑛2. If𝐻𝑞+1,𝑡𝐸 (𝑛)∗/𝐼 (𝑎)𝑛 ≠ 0, then
𝑡 ≡ 𝑐 |𝑣2 | mod ( |𝑣3 |) with 0 ≤ 𝑐 < 𝑎.

Proof. We recall that 𝐻 0𝐸 (𝑛)∗/𝐼 (1)𝑛 = 𝐻 0𝐾 (𝑛)∗ = 𝐾 (𝑛)∗. Since
the condition 𝑞 + 1 = 𝑛2 implies (𝑝 − 1) ∤ 𝑛, the Poincare du-
ality implies 𝐻𝑞+1𝐸 (𝑛)∗/𝐼 (1)𝑛 = 𝐾 (𝑛)∗{𝑔} with |𝑔| = 0. Hence,
if 𝐻𝑞+1,𝑡𝐸 (𝑛)∗/𝐼 (1)𝑛 ≠ 0, then 𝑡 ≡ 0 mod ( |𝑣𝑛 |), and we see the
claim at 𝑎 = 1.

We prove the lemma by an induction for 𝑎. Assume that

If 𝐻𝑞+1,𝑡𝐸 (𝑛)∗/𝐼 (𝑎−1)
𝑛 ≠ 0, then 𝑡 ≡ 𝑐 |𝑣𝑛−1 | mod (|𝑣𝑛 |) with 0 ≤ 𝑐 < 𝑎 − 1.

We consider the exact sequence

𝐻𝑞+1,𝑡−|𝑣𝑛−1 |𝐸 (𝑛)∗/𝐼 (𝑎−1)
𝑛

𝑣𝑛−1−−−→ 𝐻𝑞+1,𝑡𝐸 (𝑛)∗/𝐼 (𝑎)𝑛

→ 𝐻𝑞+1,𝑡𝐸 (𝑛)∗/𝐼 (1)𝑛 .

If 𝐻𝑞+1,𝑡𝐸 (𝑛)∗/𝐼 (𝑎)𝑛 ≠ 0, then 𝐻𝑞+1,𝑡−|𝑣𝑛−1 |𝐸 (𝑛)∗/𝐼 (𝑎−1)
𝑛 ≠ 0 or

𝐻𝑞+1,𝑡𝐸 (𝑛)∗/𝐼 (1)𝑛 ≠ 0. Therefore, by the assumption, 𝑡 − |𝑣𝑛−1 | ≡
𝑐 |𝑣𝑛−1 | mod (|𝑣𝑛 |) with 0 ≤ 𝑐 < 𝑎 − 1, or 𝑡 ≡ 0 mod ( |𝑣3 |).
Hence we have 𝑡 ≡ 𝑐 |𝑣𝑛−1 | mod (|𝑣𝑛 |) with 0 ≤ 𝑐 < 𝑎. □

Proof of Theorem 3. If 𝑘𝑒 ≤ 𝑎(𝑡) where 𝑎(𝑡) is in (1), then
𝑣𝑡𝑛 is in 𝐸 (𝑛)0,𝑡 |𝑣𝑛 |

2 (𝑉𝑘𝑒 ). By the Morava vanishing theorem, the
assumption𝑞+1 = 2𝑝−1 = 𝑛2 implies that we have only possibly
nonzero differential

𝑑𝑞+1 : 𝐸 (𝑛)0,𝑡 |𝑣𝑛 |
2 (𝑉𝑘𝑒 ) → 𝐸 (𝑛)𝑞+1,𝑞+𝑡 |𝑣𝑛 |

2 (𝑉𝑘𝑒 ).

Put

𝑒 (𝑖) = 𝑝𝑖 − 1
𝑝 − 1

and then |𝑣𝑖 | = 𝑒 (𝑖)𝑞. By Lemma 5, if 𝐸 (𝑛)𝑞+1,𝑞+𝑡 |𝑣𝑛 |
2 (𝑉𝑘𝑒 ) ≠ 0,

then 𝑞 + 𝑡 |𝑣𝑛 | ≡ 𝑐 |𝑣𝑛−1 | mod (|𝑣𝑛 |) with 0 ≤ 𝑐 < 𝑘𝑒. This im-
plies 1 ≡ 𝑐𝑒 (𝑛 − 1) mod (𝑒 (𝑛)). Since 𝑝𝑒 (𝑛 − 1) = 𝑒 (𝑛) − 1, we
have

𝑐 ≡ −𝑐 (𝑒 (𝑛) − 1) = −𝑐𝑝𝑒 (𝑛 − 1) ≡ −𝑝 ≡ 𝑒 (𝑛) − 𝑝 mod (𝑒 (𝑛)) .

However, the assumption 𝑎 = 𝑘𝑒 ≤ 1 + 𝑝2 (𝑝𝑛−2 − 1)/(𝑝 − 1) =
𝑒 (𝑛) − 𝑝 implies that we have no 𝑐 such that 0 ≤ 𝑐 < 𝑘𝑒 and
𝑐 ≡ 𝑒 (𝑛) − 𝑝 mod (𝑒 (𝑛)). Therefore, 𝐸 (𝑛)𝑞+1,𝑞+𝑡 |𝑣𝑛 |

2 (𝑉𝑘𝑒 ) = 0,
and so 𝑣𝑡𝑛 survives to 𝑣 ∈ 𝜋∗ (𝐿𝑛𝑉𝑘𝑒 ). Let 𝐽 denote the collaps-
ing map from 𝑉𝑘𝑒 to the top cell. By the geometric boundary
theorem, the composite 𝐽 ◦ 𝑣 is 𝛼 (𝑛)

𝑡/𝑎 . □

Remark 6 In the case for𝑎 = 2+𝑝2 (𝑝𝑛−2−1)/(𝑝−1) = 𝑒 (𝑛)−𝑝+
1, we cannot prove the existence of 𝛼 (𝑛)

𝑡/𝑒 (𝑛)−𝑝+1 in the way of this

note. Indeed, if 𝑉𝑒 (𝑛)−𝑝+1 exists and 𝑣𝑡𝑛 ∈ 𝐸 (𝑛)0,𝑡 |𝑣𝑛 |
2 (𝑉𝑒 (𝑛)−𝑝+1),

then

𝑑𝑞+1 (𝑣𝑡𝑛) ∈ 𝐸 (𝑛)
𝑞+1,𝑡 |𝑣𝑛 |+𝑞
2 (𝑉𝑒 (𝑛)−𝑝+1) ∋ 𝑣𝑒 (𝑛)−𝑝𝑛−1 𝑣𝑡−𝑒 (𝑛−1)+1

𝑛 𝑔.

Therefore, we don’t know whether or not 𝑑𝑞+1 (𝑣𝑡𝑛) = 0.

3. Remarks in the case for (𝑝, 𝑛) = (13, 5)
By [6, Th. 1.1], at (𝑝, 𝑛) = (13, 5), the spectrum 𝑉 (𝑛 − 2) =

𝑉 (3) exists. By the periodicity theorem of Hopkins-Smith (cf,
[3, Chapter 6]), 𝑉 (3) admits a 𝑣4-self map

𝑣𝑒4
4 : Σ57120𝑒4𝑉 (3) → 𝑉 (3)

for a sufficiently large 𝑒4. Therefore, Theorem 3 implies that
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Corollary 7 At 𝑝 = 13, the element 𝜀𝑡/𝑎 exists in 𝜋∗ (𝐿5𝑆
0) if

𝑎 = 𝑘𝑒4 ≤ min{𝑎(𝑡), 30928} =
{

13𝜈13 (𝑡 ) 𝜈13 (𝑡) < 5
30928 𝜈13 (𝑡) ≥ 5

for 𝑘 ≥ 1.

Conjecture 8 𝑒4 = 1, that is, the spectrum 𝑉 (3) admits

𝑣4 : Σ57120𝑉 (3) → 𝑉 (3)

at 𝑝 = 13.

Remark that, by [1, Th. 1.3], we know that 𝑉 (7) doesn’t exist at
𝑝 = 13. Even if Conjecture 8 is true, we have no contradiction to
this fact.

Corollary 9 If Conjecture 8 holds, then, at 𝑝 = 13, the element
𝜀𝑡/𝑎 exists in 𝜋∗ (𝐿5𝑆

0) if

𝑎 ≤ min{𝑎(𝑡), 30928} =
{

13𝜈13 (𝑡 ) 𝜈13 (𝑡) < 5,
30928 𝜈13 (𝑡) ≥ 5.
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