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In this article, it is considered homomorphisms on unital vector lattices consisting of uniformly continuous real-
valued functions. After summarizing lattice theoretic properties of homomorphisms, we explain how to construct
compactifications as spaces of homomorphisms. We give a detailed proof of the characterization theorem of the
Samuel-Smirnov compactification of the half-line given by F. and J. Cabello Sánchez [3]. Then we apply it to prove
a structure theorem for the remainder, which provides a concrete description of the half-line version of the structure
theorem given by R. Grant Woods [7].

Throughout this article, H denotes the half-line [0,∞) with
the metric given by the absolute value |𝑥 − 𝑦 |, 𝑥,𝑦 ∈ H, and N
denotes the space of natural numbers with the induced metric.
Also, 𝑋 = (𝑋,𝑑) is assumed to be a metric space.

Let L ⊂ 𝐶 (𝑋 ) be a unital vector lattice, that is, L contains
the unit 1 : 𝑋 → R. The sublattice of all bounded functions
of L is denoted by L∗. A function 𝜙 : L → R is called a
homomorphism if it is a linear map preserving joins and meets,
that is, 𝜙 satisfies

(i) 𝜙 (𝑓 ∨ 𝑔) = 𝜙 (𝑓 ) ∨ 𝜙 (𝑔), 𝜙 (𝑓 ∧ 𝑔) = 𝜙 (𝑓 ) ∧ 𝜙 (𝑔), and
(ii) 𝜙 (𝜆𝑓 + 𝜇𝑔) = 𝜆𝜙 (𝑓 ) + 𝜇𝜙 (𝑔)

for all 𝑓 , 𝑔 ∈ L, 𝜆, 𝜇 ∈ R. Note that conditions (i) and (ii) implies

(iii) 𝜙 (|𝑓 |) = |𝜙 (𝑓 ) | for all 𝑓 ∈ L.

Indeed, the formulation

|𝑓 | = 𝑓 ∨ 0 − 𝑓 ∧ 0

implies that

𝜙 (|𝑓 |) = 𝜙 (𝑓 ) ∨ 𝜙 (0) − 𝜙 (𝑓 ) ∧ 𝜙 (0)
= 𝜙 (𝑓 ) ∨ 0 − 𝜙 (𝑓 ) ∧ 0
= |𝜙 (𝑓 ) |.

Also, condition (i) follows from conditions (ii) and (iii). To see
this, first note that

𝑓 ∨ 𝑔 = 1
2 (𝑓 + 𝑔 + |𝑓 − 𝑔 |) and 𝑓 ∧ 𝑔 = 1

2 (𝑓 + 𝑔 − |𝑓 − 𝑔|) .

Then we have

𝜙 (𝑓 ∨ 𝑔) = 𝜙
(

1
2 (𝑓 + 𝑔 + |𝑓 − 𝑔|)

)
= 1

2 (𝜙 (𝑓 ) + 𝜙 (𝑔) − |𝜙 (𝑓 ) − 𝜙 (𝑔) |)
= 𝜙 (𝑓 ) ∨ 𝜙 (𝑔).

Similarly, we have 𝜙 (𝑓 ∧ 𝑔) = 𝜙 (𝑓 ) ∧ 𝜙 (𝑔). As is well-known,
join and meet induce a partial order ≤ on 𝐻 (L), that is,

𝑓 ≤ 𝑔 ⇐⇒ 𝑓 = 𝑓 ∧ 𝑔

or equivalently,
𝑓 ≤ 𝑔 ⇐⇒ 𝑔 = 𝑓 ∨ 𝑔.

Then the condition (i) implies that

(iv) 𝜙 (𝑓 ) ≤ 𝜙 (𝑔) whenever 𝑓 ≤ 𝑔.

Besides, condition (iii) implies that a homomorphism 𝜙 is posi-
tive, that is,

(v) 𝜙 (𝑓 ) ≥ 0 whenever 𝑓 ∈ L satisfies 𝑓 ≥ 0.

The set of all homomorphisms 𝜙 : L → R is denoted by 𝐻 (L).
Note that 𝐻 (L) is a subset of RL . We always consider the
topology on 𝐻 (L) inherited from RL . Put

𝐾 (L) = {𝜙 ∈ 𝐻 (L) : 𝜙 (1) = 1}.

Then it is easy to see that 𝐾 (L) ⊂ 𝐻 (L), and 𝐻 (L) and 𝐾 (L)
are closed subspaces of RL . In particular, 𝐻 (L∗) and 𝐾 (L∗)
are compact spaces. Indeed, they are closed subspaces of the
Cartesian product ∏

𝑓 ∈L∗

[
inf 𝑓 , sup 𝑓

]
.
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For each 𝑥 ∈ 𝑋 , let 𝛿𝑥 : L → R be the evaluation homomor-
phism defined by 𝛿𝑥 (𝑓 ) = 𝑓 (𝑥) for every 𝑓 ∈ L. We note that
𝛿𝑥 (1) = 1 for every 𝑥 ∈ 𝑋 . Then define

𝛿 : 𝑋 → 𝐾 (L)

by 𝛿 (𝑥) = 𝛿𝑥 for each 𝑥 ∈ 𝑋 . In case we treat L∗, consider the
map

𝑒L∗ : 𝑋 →
∏
𝑓 ∈L∗

[
inf 𝑓 , sup 𝑓

]
,

defined by 𝑒L∗ (𝑥) = (𝑓 (𝑥)) for every 𝑥 ∈ 𝑋 . One should
note that two maps 𝛿 : 𝑋 → 𝐾 (L∗) ⊂ RL and 𝑒L∗ : 𝑋 →∏

𝑓 ∈L∗ [inf 𝑓 , sup 𝑓 ] ⊂ RL are essentially the same correspon-
dence.

Recall that a basic neighborhood of 𝜙 ∈ 𝐻 (L) (or 𝜙 ∈ 𝐾 (L))
is given by

𝑉 (𝜙 ; 𝑓1, . . . , 𝑓𝑛; 𝜀) = {𝜙 ∈ L : |𝜙 (𝑓𝑖 ) −𝜙 (𝑓𝑖 ) | < 𝜀, ∀𝑖 = 1, . . . , 𝑛},

where 𝜀 > 0 and 𝑓𝑖 ∈ L, 𝑖 = 1, . . . , 𝑛.

Proposition 1 The evaluation map𝛿 : 𝑋 → 𝐾 (L) is continuous
and 𝛿 (𝑋 ) is dense in 𝐾 (L).

Proof The continuity of 𝛿 is trivial. We shall show that 𝛿 (𝑋 )
is dense in 𝐾 (L). Suppose the contrary that 𝛿 (𝑋 ) is not dense
in 𝐾 (L). Then we can take 𝜙 ∈ 𝐾 (L) and its basic neighbor-
hood 𝑉 (𝜙 ; 𝑓1, . . . , 𝑓𝑛; 𝜀) of 𝜙 missing 𝛿𝑥 for every 𝑥 ∈ 𝑋 , that is,
|𝛿𝑥 (𝑓𝑖 ) − 𝜙 (𝑓𝑖 ) | ≥ 𝜀 for every 𝑥 ∈ 𝑋 . Consider the map

𝑔 =
𝑛∨
𝑖=1

��𝑓𝑖 − 𝜙 (𝑓𝑖 ) · 1
��.

It is easy to see that 𝑔 ∈ L and 𝑔 ≥ 𝜀 · 1. Then we have

𝜙 (𝑔) =
𝑛∨
𝑖=1

��𝜙 (𝑓𝑖 ) − 𝜙 (𝑓𝑖 ) · 𝜙 (1)�� = 0.

One should note that our assumption 𝜙 (1) = 1 is essential to get
this equality. On the other hand, we have 𝜙 (𝜀 · 1) = 𝜀 · 𝜙 (1) =
𝜀 · 1 > 0, thus, 𝜙 cannot be a homomorphism, a contradiction. □

Though 𝐾 (L) is not compact in general, it can be considered
as a realcompactification of𝑋 by Proposition 1. See [5] for more
information about realcompactifications.

A unital vector lattice L ⊂ 𝐶 (𝑋 ) is said to separate points
and closed sets in 𝑋 provided that, for each close set 𝐹 ⊂ 𝑋 and
each point 𝑝 ∈ 𝑋 \ 𝐹 , there exists 𝑓 ∈ L such that 𝑓 (𝑝) ∉ cl𝑋 𝐹 .

The following is a fundamental fact concerning 𝐾 (L) (see [5]
and [6, 1.7 (j)]).

Proposition 2 If L separates points and closed sets in 𝑋 , then
𝛿 : 𝑋 → 𝐾 (L) is a topological embedding.

Let U(𝑋 ) denote the lattice of all uniformly continuous func-
tions on 𝑋 . We write U (resp. U∗) instead of U(H) (resp.
U(H)∗) for notational simplicity. The family U∗ (𝑋 ) has a ring
structure with respect to R, but U(𝑋 ) does not. So, we have

to consider lattice homomorphisms instead of ring homomor-
phisms.

Let 𝛼𝑋 and 𝛾𝑋 be compactifications of 𝑋 . We say 𝛼𝑋 ⪰ 𝛾𝑋
provided that there is a continuous map 𝑓 : 𝛼𝑋 → 𝛾𝑋 such that
𝑓 |𝑋 = id𝑋 . If 𝛼𝑋 ⪯ 𝛾𝑋 and 𝛼𝑋 ⪰ 𝛾𝑋 then we say that 𝛼𝑋
and 𝛾𝑋 are equivalent compactifications of 𝑋 . Of course, two
equivalent compactifications of 𝑋 are homeomorphic.

It is easy to check that U∗ (𝑋 ) contains all constant maps,
separates points from closed sets, and is a closed subring of
𝐶∗ (𝑋 ) with respect to the sup-metric, i.e., U∗ (𝑋 ) is a complete
ring on functions. Hence, U∗ (𝑋 ) uniquely determines a com-
pactification 𝑢𝑋 of 𝑋 (see [4, 3.12.22 (e)], [6, 4.5]), which is
called the Samuel-Smirnov compactification of 𝑋 (see [2], [7]).
We note that 𝑢𝑋 is equivalent to 𝐾 (U∗ (𝑋 )) = clRU∗𝛿 (𝑋 ) be-
cause of the equivalence of two maps 𝛿 : 𝑋 → 𝐾 (U∗) and
𝑒U∗ : 𝑋 → ∏

𝑓 ∈L∗
[
inf 𝑓 , sup 𝑓

]
.

The following is a characterization of Samuel-Smirnov com-
pactifications [7, Theorem 2.5].

Theorem 3 Let 𝛼𝑋 be a compactification of a metric space 𝑋 .
The following are equivalent:

(a) 𝛼𝑋 is equivalent to 𝑢𝑋 .
(b) If 𝐴, 𝐵 ⊂ 𝑋 then cl𝛼𝑋𝐴 ∩ cl𝛼𝑋𝐵 ≠ ∅ if and only if

𝑑 (𝐴, 𝐵) = 0, where 𝑑 (𝐴, 𝐵) = inf{𝑑 (𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
(c) {𝑓 ∈ 𝐶∗ (𝑋 ) : 𝑓 can be continuously extended to 𝛼𝑋 }

= U∗ (𝑋 ).

Let 𝐿𝑖𝑝 (𝑋 ) denote the unital vector lattice of all Lipschitz
real-valued functions on 𝑋 , and 𝐿𝑖𝑝∗ (𝑋 ) the vector lattice of all
bounded functions in 𝐿𝑖𝑝 (𝑋 ). The next theorem gives another
description of Samuel-Smirnov compactifications [5, Theorem
3.1].

Theorem 4 Let (𝑋,𝑑) be a metric space. Then 𝐾 (𝐿𝑖𝑝∗ (𝑋 )) is
equivalent to the Samuel-Smirnov compactification 𝑢𝑋 of 𝑋 .

As a result, we have

𝑢𝑋 ≡ 𝐾 (U∗ (𝑋 )) ≡ 𝐾 (𝐿𝑖𝑝∗ (𝑋 )).

The following two results are proved in [2].

Proposition 5 Let 𝜙 ∈ 𝐻 (U). Then 𝜙 has the form 𝜙 = 𝑐𝛿𝑡 for
some 𝑡 ∈ H and 0 < 𝑐 < ∞ if and only if 𝜙 (1) > 0. If 𝜙 (1) = 0,
then 𝜙 (𝑓 ) = 0 for every 𝑓 ∈ U∗.

Corollary 6 𝐾 (U) = 𝛿 (H).

A metric space 𝑋 is said to be metrically convex if, for every
two points 𝑥0, 𝑥1 ∈ 𝑋 and every 0 < 𝑡 < 1, there exists 𝑥𝑡 ∈ 𝑋
such that 𝑑 (𝑥0, 𝑥𝑡 ) = 𝑡𝑑 (𝑥0, 𝑥1) and 𝑑 (𝑥1, 𝑥𝑡 ) = (1 − 𝑡)𝑑 (𝑥0, 𝑥1).
A continuous map 𝑓 : 𝑋 → 𝑌 between metric spaces is said to
be Lipschitz for large distance provided that, for every 𝜀 > 0,
there exists 𝐿 > 0 depending on 𝜀 and 𝑓 such that

𝑑 (𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐿𝑑 (𝑥,𝑦)
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whenever 𝑑 (𝑥,𝑦) ≥ 𝜀.
The following is proved in [1, Proposition 1.11].

Proposition 7 If 𝑋 is a metrically convex space, then every uni-
formly continuous map 𝑓 : 𝑋 → 𝑌 from 𝑋 to a space 𝑌 is
Lipschitz for large distance.

Let 𝜏 : H→ R be the map defined by

𝜏 (𝑥) = 𝑥 + 1

for every 𝑥 ∈ H. By Proposition 7, we have the following:

Corollary 8 For each 𝑓 ∈ U, there is 𝐿 > 0 such that |𝑓 | ≤ 𝐿𝜏 .
As a result, lim sup𝑥→∞ 𝑥

−1 |𝑓 (𝑥) | is finite. In particular,

lim sup
𝑡→∞

|𝑓 (𝑥) |
𝜏 (𝑥) < ∞.

Let F be an ultrafilter on N0 = N ∪ {0}. Then we define the
operation limF (𝑛) by

lim
F (𝑛)

𝑓 (𝑛) =
⋂
𝐹 ∈F

cl {𝑓 (𝑛) : 𝑛 ∈ 𝐹 }

for every 𝑓 ∈ 𝐶 (H). Recall that every element of the Stone-Čech
compactification 𝛽N0 of N0 can be considered as an ultrafilter
onN0. For each subset 𝐹 ⊂ N0, let 1+𝐹 = {1+𝑥 : 𝑥 ∈ 𝐹 }. Then
1 +F denotes the ultrafilter generated by {1 + 𝐹 : 𝐹 ∈ F }. Two
ultrafilters F and 1 + F are different. In fact, the set of even
numbers 2N is contained in only one of F or 1 + F .

Put
𝐻𝜏 = {𝜙 ∈ 𝐻 (U) : 𝜙 (𝜏) = 1}.

Then define 𝜇 : [0, 1] × 𝛽N0 → 𝐻𝜏 by

𝜇 (𝑐,F )(𝑔) = lim
F (𝑛)

𝑔(2𝑐+𝑛 − 1)
2𝑐+𝑛

(𝑔 ∈ U)

for every 𝑐 ∈ [0, 1] and every ultrafilter F on N0.
In [2], F. Cabello Sánchez showed that 𝜇 is a continuous surjec-

tion. In particular, considering 𝐻𝜏 as the quotient space induced
from 𝜇, he proved the following:

Theorem 9 𝐻𝜏 is homeomorphic to the quotient obtained from
[0, 1] × 𝛽N0 after identifying each point of the form (1,F ) with
(0, 1 + F ).

As a corollary, next result follows (see [3]).

Corollary 10 Each lattice homomorphism 𝜙 : U → R has the
form

𝜙 (𝑔) = 𝜙 (𝜏) · lim
F (𝑛)

𝑔(2𝑐+𝑛 − 1)
2𝑐+𝑛

(𝑔 ∈ U)

where F is an ultrafilter on N0 and 𝑐 ∈ [0, 1]. Moreover,
(𝑐,F ) and (𝑑,G ) induce the same homomorphism if and only if
𝑐 = 1, 𝑑 = 0 and G = 1 + F , or vice-versa.

Next we consider the map 𝜇∗ : [0, 1] × N0 → 𝐾 (U∗) defined
by 𝜇∗ (𝑐, 𝑛) = 𝛿𝑐+𝑛 for every (𝑐, 𝑛) ∈ [0, 1] × N0. Because each
𝜙 ∈ 𝐻 (U∗) has a basic neighborhood𝑉 (𝜙 ; 𝑓1, . . . , 𝑓𝑛; 𝜀) for some
𝜀 > 0 and 𝑓𝑖 ∈ U∗, 𝑖 = 1, . . . , 𝑛, it follows that 𝜇∗ is continuous.

Consider the map 𝜇∗ : [0, 1] × 𝛽N0 → 𝐾 (U∗) defined by

𝜇∗ (𝑐,F ) (𝑓 ) = lim
F (𝑛)

𝑓 (𝑐 + 𝑛) (𝑓 ∈ U∗)

for every 𝑐 ∈ [0, 1] and every ultrafilter F on N0. Since
each point 𝑛 ∈ N0 is considered as a limit of a fixed ultrafil-
ter on N0, the map 𝜇∗ can be considered as the extension of
𝜇∗ : [0, 1] × N0 → 𝐾 (U∗). Hence, if we show that 𝜇∗ is con-
tinuous, then 𝜇∗ is the unique continuous extension of 𝜇∗ and is
surjective by the density of the image of 𝜇∗. To see the continuity
of 𝜇∗, we remember the topology of 𝛽N0. As is well-known, 𝛽N0

is identified with the closure of the following evaluation map

𝑒𝐶∗ (N0) : N0 →
∏

𝑓 ∈𝐶∗ (N0)

[
inf 𝑓 , sup 𝑓

]
.

Then for an ultrafilter F ∈ 𝛽N0, the corresponding point is
represented by(

lim
F (𝑛)

𝑓 (𝑛)
)
𝑓 ∈𝐶∗ (N0)

∈
∏

𝑓 ∈𝐶∗ (N0)

[
inf 𝑓 , sup 𝑓

]
.

We put 𝜙 = 𝜇∗ (𝑐,F ) and consider a basic neighborhood
𝑉 (𝜙 ; 𝑓1, . . . , 𝑓𝑘 ; 𝜀) of 𝜙 in 𝐾 (U∗). Then we can take a neigh-
borhood 𝑉 of F in 𝛽N0 as follows:

𝑉 = {G : | lim
G (𝑛)

𝑓𝑖 (𝑐 + 𝑛) − lim
F (𝑛)

𝑓𝑖 (𝑐 + 𝑛) | < 𝜀
2 , 1 ≤ ∀𝑖 ≤ 𝑘}.

Using the uniformity of 𝑓𝑖 ’s, we can take a neighborhood𝑈 of 𝑐
in [0, 1] such that, 𝑑 ∈ 𝑈 implies that��𝑓𝑖 (𝑑 + 𝑛) − 𝑓𝑖 (𝑐 + 𝑛)

�� < 𝜀
2

for every 𝑛 ∈ N0 and every 𝑖 = 1, . . . , 𝑘 . Then it follows that
𝜇∗ (𝑈 ×𝑉 ) ⊂ 𝑉 (𝜙 ; 𝑓1, . . . , 𝑓𝑘 ; 𝜀). Thus, 𝜇∗ is continuous.

We are going to consider the kernel of 𝜇∗ : [0, 1] × 𝛽N0 →
𝐾 (U∗). Obviously, 𝜇∗ (𝑐,F ) = 𝜇∗ (𝑑,G ) when 𝑐 = 1, 𝑑 = 0
and G = 1 + F , or vice-versa. We shall show that 𝜇∗ (𝑐,F ) ≠
𝜇∗ (𝑑,G ) in the other cases. We may assume without loss of
generality that 0 ≤ 𝑐 ≤ 𝑑 < 1.

Suppose that F ≠ G . Then there exists 𝐴 ⊂ N0 such
that 𝐴 ∈ F but 𝐴 ∉ G since they are ultrafilters. Define
𝑓 : H→ [0, 1] as a piecewise linear map such that

𝑓 (𝑡) =
{

1 if 𝑡 = 𝑐 + 𝑛 and 𝑛 ∈ 𝐴,
0 if 𝑡 = 𝑑 + 𝑛 and 𝑛 ∉ 𝐴.

We can take 𝑓 as a bounded uniformly continuous map. Then
we have

𝜇∗ (𝑐,F )(𝑓 ) = lim
F (𝑛)

𝑓 (𝑐 + 𝑛) = lim
𝐴(𝑛)

𝑓 (𝑐 + 𝑛) = 1

but 𝜇∗ (𝑑,G )(𝑓 ) = 0.
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If F = G but 𝑐 ≠ 𝑑 , then we take a piecewise linear map
𝑔 : H→ [0, 1] such that

𝑔(𝑡) =
{

1 if 𝑡 = 𝑐 + 𝑛,
0 if 𝑡 = 𝑑 + 𝑛.

Also, we can take 𝑔 as a bounded uniformly continuous map.
Then it is easy to see that 𝜇∗ (𝑐,F ) (𝑔) = 1 and 𝜇∗ (𝑑,F ) (𝑔) = 0.
Thus, 𝜇∗ (𝑐,F ) = 𝜇∗ (𝑑,G ) if and only if 𝑐 = 1, 𝑑 = 0 and
G = 1 + F , or vice-versa.

These estimation of the kernel of 𝜇∗ gives the following, they
are in fact stated in [3].

Theorem 11 The Samuel-Smirnov compactification 𝐾 (U∗) of
H is homeomorphic to the quotient obtained from [0, 1] × 𝛽N0

after identifying each point of the form (1,F ) with (0, 1 + F ).

Corollary 12 Each lattice homomorphism 𝜙 : U∗ → R has the
form

𝜙 (𝑓 ) = 𝜙 (1) · lim
F (𝑛)

𝑓 (𝑐 + 𝑛) (𝑓 ∈ U∗)

where F is an ultrafilter on N0 and 𝑐 ∈ [0, 1]. Moreover,
(𝑐,F ) and (𝑑,G ) induce the same homomorphism if and only If
𝑐 = 1, 𝑑 = 0 and G = 1 + F , or vice-versa.

As F. Cabello Sánchez said in [3], Corollary 12 can be con-
sidered as a description of Samuel-Smirnov compactification of
the half-line when we restrict to 𝐾 (U∗).

Let𝐶0 (𝑋 ) ⊂ 𝐶 (𝑋 ) denote the set of functions which are small
off compact sets, that is, 𝑓 ∈ 𝐶0 (𝑋 ) if and only if, given 𝜀 > 0,
there exists a compact subset 𝐾 of 𝑋 such that |𝑓 (𝑥) | < 𝜀 for
every 𝑥 ∈ 𝑋 \ 𝐾 . We write 𝐶0 instead of 𝐶0 (H) for notational
simplicity. It is easy to see that each element of 𝐶0 (𝑋 ) is uni-
formly continuous and bounded, i.e., 𝐶0 (𝑋 ) ⊂ U∗ (𝑋 ). Also,
𝐶0 (𝑋 ) is an ideal of U∗ (𝑋 ). So, we can consider the quotient
U∗ (𝑋 )/𝐶0 (𝑋 ). For each 𝑓 ∈ U∗ (𝑋 ), [𝑓 ] denotes the equiv-
alence class of 𝑓 . We define join and meet on U∗ (𝑋 )/𝐶0 (𝑋 )
by [𝑓 ] ∨ [𝑔] = [𝑓 ∨ 𝑔] and [𝑓 ] ∧ [𝑔] = [𝑓 ∧ 𝑔]. The well-
definedness of these follows easily. Indeed, each 𝑓 ′ ∈ [𝑓 ] and
𝑔′ ∈ [𝑔] can be expressed as 𝑓 ′ = 𝑓 +ℎ1 and 𝑔′ = 𝑔+ℎ2 for some
ℎ1, ℎ2 ∈ 𝐶0 (𝑋 ). Note that we have | (𝑓 + ℎ) ∨ 𝑔 − 𝑓 ∨ 𝑔| ≤ |ℎ |
for every 𝑓 , 𝑔, ℎ ∈ 𝐶 (𝑋 ). Then this inequality implies that

| (𝑓 + ℎ1) ∨ (𝑔 + ℎ2) − 𝑓 ∨ 𝑔|
≤ |(𝑓 + ℎ1) ∨ (𝑔 + ℎ2) − 𝑓 ∨ (𝑔 + ℎ2) |

+ |𝑓 ∨ (𝑔 + ℎ2) − 𝑓 ∨ 𝑔| ≤ |ℎ1 | + |ℎ2 |.

This means that (𝑓 + ℎ1) ∨ (𝑔 + ℎ2) − 𝑓 ∨ 𝑔 ∈ 𝐶0 (𝑋 ). Hence,
we have [𝑓 ] ∨ [𝑔] = [𝑓 ′] ∨ [𝑔′] for every 𝑓 ′ ∈ [𝑓 ] and 𝑔′ ∈ [𝑔].
Similarly, we have [𝑓 ] ∧ [𝑔] = [𝑓 ′] ∧ [𝑔′] for every 𝑓 ′ ∈ [𝑓 ] and
𝑔′ ∈ [𝑔].

In what follows, 𝑋 is assumed to be a proper metric space.
Then the remainder 𝑢𝑋 \ 𝑋 of Samuel-Smirnov compactifica-
tion is compact. It should be remarked that 𝐶 (𝑢𝑋 ) = 𝐶∗ (𝑢𝑋 ) =
U∗ (𝑋 ), and 𝐶 (𝑢𝑋 \ 𝑋 ) = 𝐶∗ (𝑢𝑋 \ 𝑋 ), in particular, 𝐶 (𝑢𝑋 \ 𝑋 )

is isomorphic to U∗ (𝑋 )/𝐶0 (𝑋 ). Thus, the homomorphisms
on U∗ (𝑋 )/𝐶0 (𝑋 ) can be considered as homomorphisms of the
continuous functions on the remainder of Samuel-Smirnov com-
pactification 𝑢𝑋 of 𝑋 , that is,

𝐻 (U∗ (𝑋 )/𝐶0 (𝑋 )) ≡ 𝐻 (𝐶 (𝑢𝑋 \ 𝑋 )).

As we have already seen, 𝐾 (𝐶∗ (𝑢𝑋 \ 𝑋 )) is a compact space
containing 𝛿 (𝑢𝑋 \ 𝑋 ) as a dense subspace. Since 𝛿 (𝑢𝑋 \ 𝑋 )
is compact, 𝐾 (𝐶∗ (𝑢𝑋 \ 𝑋 )) is equivalent to 𝛿 (𝑢𝑋 \ 𝑋 ), that is,
𝐾 (𝐶∗ (𝑢𝑋 \ 𝑋 )) is homeomorphic to the remainder of Samuel-
Smirnov compactification of 𝑋 , that is,

𝐾 (U∗ (𝑋 )/𝐶0 (𝑋 )) ≡ 𝑢𝑋 \ 𝑋 .

Let 𝜙 ∈ 𝐻 (U∗ (𝑋 )/𝐶0 (𝑋 )). If we define 𝜙 (𝑓 ) = 𝜙 ([𝑓 ]) for
every 𝑓 ∈ U∗ (𝑋 ), then 𝜙 becomes a homomorphism on U∗ (𝑋 )
with the property that𝜙 (ℎ) = 0 for everyℎ ∈ 𝐶0 (𝑋 ). Conversely,
if 𝜙 ∈ 𝐻 (U∗ (𝑋 )) satisfies 𝜙 (ℎ) = 0 for every ℎ ∈ 𝐶0 (𝑋 ), then
the map 𝜙 : U∗ (𝑋 )/𝐶0 (𝑋 ) → R defined by 𝜙 ( [𝑓 ]) = 𝜙 (𝑓 )
is well-defined and becomes a homomorphism. Thus, we can
identify each homomorphism 𝜙 ∈ 𝐻 (U∗ (𝑋 )/𝐶0 (𝑋 )) with a ho-
momorphism 𝜙 ∈ 𝐻 (U∗ (𝑋 )) with 𝜙 |𝐶0 (𝑋 ) = 0.

Now we consider the remainder𝑢H\H of the Samuel-Smirnov
compactification of the half-line, that is, the homomorphisms on
U∗/𝐶0. Let 𝜙 ∈ 𝐻 (U∗) be such that 𝜙 |𝐶0 = 0. By Corollary 12,
we can take an ultrafilter F on N0 and 𝑐 ∈ [0, 1] such that

𝜙 (𝑓 ) = 𝜙 (1) · lim
F (𝑛)

𝑓 (𝑐 + 𝑛)

for every 𝑓 ∈ U∗. If F is a fixed ultrafilter, then 𝜙 = 𝜙 (1) · 𝛿𝑐+𝑥
where 𝑥 is the limit point of F . Therefore, 𝜙 cannot be zero on
𝐶0. If F is a free ultrafilter on N0, then

lim
F (𝑛)

ℎ(𝑐 + 𝑛) = 0

for every ℎ ∈ 𝐶0. Thus, these arguments give a lattice theoretic
proof of the following structure theorem, which is a one-ended
version of [7, Theorem 4.8]:

Theorem 13 The remainder𝑢H\H of the Samuel-Smirnov com-
pactification of the half-line is homeomorphic to the quotient
obtained from [0, 1] × (𝛽N0 \N0) after identifying each point of
the form (1,F ) with (0, 1 + F ).

Corollary 14 Each lattice homomorphism 𝜙 : U∗/𝐶0 → R has
the form

𝜙 ( [𝑓 ]) = 𝜙 (1) · lim
F (𝑛)

𝑓 (𝑐 + 𝑛) (𝑓 ∈ U∗)

where F is an free ultrafilter on N0 and 𝑐 ∈ [0, 1]. Moreover,
(𝑐,F ) and (𝑑,G ) induce the same homomorphism if and only If
𝑐 = 1, 𝑑 = 0 and G = 1 + F , or vice-versa.

Remark 15 In [7, Theorem 4.8], Woods proved that the re-
mainder 𝑢R \ R can be written as a union of two copies of
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[0, 1] × (𝛽𝜔 \ 𝜔) (where 𝜔 is the countably infinite discrete
space), and that their intersection is a nowhere dense copy of
𝛽𝜔 \ 𝜔 . Though we adopted N0 to describe the formula, it is of
course homeomorphic to 𝜔 . Identification of two points (1,F )
with (0, 1 +F ) given in Theorem 13 runs all over the free ultra-
filters of N0. Thus, Theorem 13 provides a concrete description
of one end version of those given in [7].
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