The Remainder of Samuel-Smirnov Compactification
of the Half-Line
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In this article, it is considered homomorphisms on unital vector lattices consisting of uniformly continuous real-

valued functions. After summarizing lattice theoretic properties of homomorphisms, we explain how to construct

compactifications as spaces of homomorphisms. We give a detailed proof of the characterization theorem of the

Samuel-Smirnov compactification of the half-line given by F. and J. Cabello Sanchez [3]. Then we apply it to prove

a structure theorem for the remainder, which provides a concrete description of the half-line version of the structure

theorem given by R. Grant Woods [7].

Throughout this article, H denotes the half-line [0, c0) with
the metric given by the absolute value |x —y|, x,y € H, and N
denotes the space of natural numbers with the induced metric.
Also, X = (X, d) is assumed to be a metric space.

Let £ c C(X) be a unital vector lattice, that is, £ contains
the unit 1 : X — R. The sublattice of all bounded functions
of L is denoted by L*. A function ¢ : £ — R is called a
homomorphism if it is a linear map preserving joins and meets,
that is, ¢ satisfies

W) ¢(f Vg =) V(g), ¢(f Ag) =¢(f) Ad(g),and
(i) ¢(Af +pg) = 19(f) + pd(g)

forall f,g € L, A, u € R. Note that conditions (i) and (ii) implies

(i) (IfD) = l¢(f)] forall f € L.

Indeed, the formulation
Ifl=fVO~-fAO
implies that

PUfD = (f) v $(0) = o(f) A ¢(0)
=9(f)VO=-¢(f) A0
=19

Also, condition (i) follows from conditions (ii) and (iii). To see
this, first note that

fvg=3(f+g+if-gh)and fAg=3(f+g—If —gl).

Then we have

p(fvg) = (2(f+g+1f-gD)

L) + ()~ 16(f) - $(9])
$() V $(g).

Similarly, we have ¢(f A g) = #(f) A $(g). As is well-known,
join and meet induce a partial order < on H(L), that is,

ff9g=f=fng

or equivalently,
fsge=g=fVvyg

Then the condition (i) implies that
@iv) ¢(f) < ¢(g) whenever f < g.

Besides, condition (iii) implies that a homomorphism ¢ is posi-
tive, that is,

v) ¢(f) = 0 whenever f € L satisfies f > 0.

The set of all homomorphisms ¢ : £ — R is denoted by H(L).
Note that H(L) is a subset of RL. We always consider the
topology on H(L) inherited from R<. Put

K(L) ={¢ € H(L) : (1) = 1}.

Then it is easy to see that K(£) c H(L), and H(L) and K(L)
are closed subspaces of R£. In particular, H(L*) and K(L*)
are compact spaces. Indeed, they are closed subspaces of the
Cartesian product

l_[ [inff, supf].

feLr
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For each x € X, let 6, : £ — R be the evaluation homomor-
phism defined by 6, (f) = f(x) for every f € L. We note that
dx(1) =1 for every x € X. Then define

§:X - K(L)

by 8(x) = d, for each x € X. In case we treat L*, consider the

map
er-: X — l_[ [inf £, sup f],
fel*

defined by e,-(x) = (f(x)) for every x € X. One should
note that two maps § : X — K(£) c R and ey : X —
[Tfep[inf f,sup f] C RL are essentially the same correspon-
dence.

Recall that a basic neighborhood of ¢ € H(L) (or ¢ € K(L))

is given by
V(g fis-o o fase) ={p € L:1p(fi) —¢(fi)l <& Vi=1,...,n},

wheree >0and ;e L,i=1,...,n.

Proposition 1 The evaluationmap § : X — K (L) is continuous
and §(X) is dense in K(L).

Proof The continuity of § is trivial. We shall show that §(X)
is dense in K(£). Suppose the contrary that §(X) is not dense
in K(L). Then we can take ¢ € K(L) and its basic neighbor-
hood V(¢; fi,.
|6x(f;) — ¢(fi)| = € for every x € X. Consider the map

.+» fus €) of ¢ missing J, for every x € X, that is,

g=\/Ifi-o() 1.
i=1

It is easy to see that g € L and g > ¢ - 1. Then we have

()= \/Ip(f) - 6(f) - ¢(D] =0.
i=1

One should note that our assumption ¢(1) = 1 is essential to get
this equality. On the other hand, we have ¢(¢-1) = ¢- ¢(1) =

e-1 > 0, thus, ¢ cannot be a homomorphism, a contradiction. O

Though K(£) is not compact in general, it can be considered
as a realcompactification of X by Proposition 1. See [5] for more
information about realcompactifications.

A unital vector lattice £ C C(X) is said to separate points
and closed sets in X provided that, for each close set F C X and
each point p € X \ F, there exists f € £ such that f(p) ¢ clxF.

The following is a fundamental fact concerning K (L) (see [5]
and [6, 1.7 (§))])-

Proposition 2 If L separates points and closed sets in X, then
§: X — K(L) is a topological embedding.

Let U (X) denote the lattice of all uniformly continuous func-
tions on X. We write U (resp. U™) instead of U (H) (resp.
U(H)") for notational simplicity. The family U/*(X) has a ring
structure with respect to R, but ¢/(X) does not. So, we have
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to consider lattice homomorphisms instead of ring homomor-
phisms.

Let aX and yX be compactifications of X. We say aX > yX
provided that there is a continuous map f : aX — yX such that
flx =1idx. If aX < yX and aX > yX then we say that aX
and yX are equivalent compactifications of X. Of course, two
equivalent compactifications of X are homeomorphic.

It is easy to check that ¢/*(X) contains all constant maps,
separates points from closed sets, and is a closed subring of
C*(X) with respect to the sup-metric, i.e., U*(X) is a complete
ring on functions. Hence, U*(X) uniquely determines a com-
pactification uX of X (see [4, 3.12.22 (e)], [6, 4.5]), which is
called the Samuel-Smirnov compactification of X (see [2], [7]).
We note that uX is equivalent to K(U* (X)) = clzu-§(X) be-
cause of the equivalence of two maps § : X — K(U*) and
eq 2 X o [lfes [inff,supf].

The following is a characterization of Samuel-Smirnov com-

pactifications [7, Theorem 2.5].

Theorem 3 Let aX be a compactification of a metric space X.

The following are equivalent:

(a) aX is equivalent to uX.
(b) If AAB C X then clyxA N clyxB # 0 if and only if
d(A,B) =0, where d(A,B) = inf{d(a,b) : a € A, b € B}.
(c) {f € C*(X) : f can be continuously extended to aX}
= U (X).

Let Lip(X) denote the unital vector lattice of all Lipschitz
real-valued functions on X, and Lip*(X) the vector lattice of all
bounded functions in Lip(X). The next theorem gives another
description of Samuel-Smirnov compactifications [5, Theorem
3.1].

Theorem 4 Let (X, d) be a metric space. Then K(Lip*(X)) is

equivalent to the Samuel-Smirnov compactification uX of X.

As a result, we have
uX = K(U* (X)) = K(Lip™(X)).

The following two results are proved in [2].

Proposition 5 Let ¢ € H(U). Then ¢ has the form ¢ = cd; for
some t € Hand 0 < ¢ < oo ifand only if (1) > 0. If $(1) =0,
then ¢(f) = 0 for every f € U*.

Corollary 6 K(U) = 6(H).

A metric space X is said to be metrically convex if, for every
two points xp, x; € X and every 0 < t < 1, there exists x; € X
such that d(xo, x;) = td(xo,x1) and d(x1,x;) = (1 — t)d(x0, x1).
A continuous map f : X — Y between metric spaces is said to
be Lipschitz for large distance provided that, for every ¢ > 0,
there exists L > 0 depending on ¢ and f such that

d(f(x), f(y)) < Ld(x,y)



whenever d(x,y) > e.

The following is proved in [1, Proposition 1.11].

Proposition 7 If X is a metrically convex space, then every uni-
Sformly continuous map f : X — Y from X to a space Y is

Lipschitz for large distance.
Let 7 : H — R be the map defined by
(x) =x+1

for every x € H. By Proposition 7, we have the following:

Corollary 8 Foreach f € U, there is L > 0 such that |f| < Lr.

As a result, limsup,_, ., x~'|f(x)| is finite. In particular,

lim sup % < oo.

Let % be an ultrafilter on Ny = N U {0}. Then we define the

operation lim z () by

lim f(n) = () cl{f(n) : n € F}

y(ﬂ) FeZF
for every f € C(H). Recall that every element of the Stone-Cech
compactification SNy of Ny can be considered as an ultrafilter
on Ny. For each subset F ¢ Ny, let 1 +F = {l+x : x € F}. Then
1 +.% denotes the ultrafilter generated by {1+ F : F € #}. Two
ultrafilters .% and 1 + .% are different. In fact, the set of even
numbers 2N is contained in only one of % or 1 + .%.

Put
Hy ={¢ e H(U) : §(r) = 1}.

Then define ji : [0, 1] x fNy — H; by

g(2c+n — 1)

(e, #)(g) = }}?3) o (geU)

for every ¢ € [0, 1] and every ultrafilter % on Nj.
In[2], F. Cabello Sanchez showed that /i is a continuous surjec-
tion. In particular, considering H; as the quotient space induced

from /i, he proved the following:

Theorem 9 H; is homeomorphic to the quotient obtained from
[0, 1] x BNy after identifying each point of the form (1, F) with
0, 1+.7).

As a corollary, next result follows (see [3]).

Corollary 10 Each lattice homomorphism ¢ : U — R has the

form

g(zc+n — 1)

$(g9) = ¢(7) - };g}) T oem (geU)

where F is an ultrafilter on Ny and ¢ € [0,1]. Moreover,
(¢, F) and (d,9) induce the same homomorphism if and only if

c=1,d=0and ¥ =1+ .%, or vice-versa.

Next we consider the map p* : [0, 1] X Ng — K(U*) defined
by p*(¢,n) = Sc4n for every (c,n) € [0, 1] X Ny. Because each
¢ € H(U™) has abasic neighborhood V(¢; fi, . .
e>0and f; e U*,i=1,...,n, it follows that y* is continuous.

Consider the map j* : [0, 1] x fNy — K(U*) defined by

.» fn; €) for some

B (e #)(f) = {;,ig})f(cﬂ) (feu)

for every ¢ € [0,1] and every ultrafilter % on Nj. Since
each point n € Ny is considered as a limit of a fixed ultrafil-
ter on Ny, the map * can be considered as the extension of
u* 2 [0,1] x Ng — K(U*). Hence, if we show that 7* is con-
tinuous, then fi* is the unique continuous extension of y* and is
surjective by the density of the image of i*. To see the continuity
of ji*, we remember the topology of fNj. As is well-known, SNy

is identified with the closure of the following evaluation map

ec+(ny) - No = 1—[ [inff, supf].
feC* (Np)
Then for an ultrafilter .# € PNy, the corresponding point is

represented by

€ l_[ [inff, supf].

feC*(No)

lim f(n))
(9’(") FeC* (M)

We put ¢ = f*(c,.#) and consider a basic neighborhood
V(¢; fi,.... fise) of ¢ in K(U*). Then we can take a neigh-
borhood V of .% in SNy as follows:

={¥:|lim f; — lim f; £ 1<Vi<k).
V={¥9 |é1(mn)fl(c+n) L}}gll)f,(c+n)|< , 1 <Vi<k}

Using the uniformity of f;’s, we can take a neighborhood U of ¢
in [0, 1] such that, d € U implies that

lfitd+n) - filc+n)| < %

for every n € Ny and every i = 1,...,k. Then it follows that
g (U XxV)cV(d;fi,..., fis€). Thus, g* is continuous.

We are going to consider the kernel of g* : [0, 1] X fNy —
K(U*). Obviously, i*(c,#) = i*(d,9) whenc =1, d =0
f(c.7) #

i*(d,¥) in the other cases. We may assume without loss of

and ¥ = 1+ .%, or vice-versa. We shall show that

generality that 0 < c <d < 1.
Suppose that .# # ¢. Then there exists A C Ny such
that A € .Z but A ¢ ¥ since they are ultrafilters. Define

f:H — [0, 1] as a piecewise linear map such that

ift=c+nandn € A,

1
f(t):{ 0 ift=d+nandn¢A.

We can take f as a bounded uniformly continuous map. Then

we have
i*(c, Z)(f) = li = li =1
(e, #)(f) g;{g)f(wn) Al(rzl)f(c+n)

but 7*(d, 9)(f) = 0.
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If # = ¢ but ¢ # d, then we take a piecewise linear map
g : H — [0, 1] such that

1 ift=c+n,
“”z{o ift=d+n.
Also, we can take g as a bounded uniformly continuous map.
Then it is easy to see that i* (¢, #)(g) = 1 and ji*(d, #)(g) = 0.
Thus, f*(¢,.-7#) = jf*(d,¥) if and only if ¢ = 1, d = 0 and
4 =1+ .7, or vice-versa.
These estimation of the kernel of i* gives the following, they

are in fact stated in [3].

Theorem 11 The Samuel-Smirnov compactification K(U*) of
H is homeomorphic to the quotient obtained from [0, 1] X Ny
after identifying each point of the form (1,.%) with (0,1 + .%).

Corollary 12 Each lattice homomorphism ¢ : U* — R has the

form

9(f) =¢(1)~L1gi&1)f(0+n) (feu)

where % is an ultrafilter on Ny and ¢ € [0,1]. Moreover,
(¢, #) and (d,9) induce the same homomorphism if and only If

c=1d=0and 9 =1+ .7, or vice-versa.

As F. Cabello Sanchez said in [3], Corollary 12 can be con-
sidered as a description of Samuel-Smirnov compactification of
the half-line when we restrict to K(U*).

Let Cop(X) € C(X) denote the set of functions which are small
off compact sets, that is, f € Co(X) if and only if, given ¢ > 0,
there exists a compact subset K of X such that |f(x)| < ¢ for
every x € X \ K. We write Cy instead of Cy(H) for notational
simplicity. It is easy to see that each element of Cy(X) is uni-
formly continuous and bounded, i.e., Co(X) € U*(X). Also,
Co(X) is an ideal of U*(X). So, we can consider the quotient
U*(X)/Co(X). For each f € U*(X), [f] denotes the equiv-
alence class of f. We define join and meet on U*(X)/Co(X)
by [f1V gl = [f Vgl and [f] A [g] = [f Ag]. The well-
definedness of these follows easily. Indeed, each f” € [f] and
g’ € [g] can be expressed as f” = f+h; and g’ = g+ h; for some
hi, hy € Co(X). Note that we have [(f+h) Vg—fVg| < |h
for every f,g,h € C(X). Then this inequality implies that

|(f+h) V(g+h)=fVygl
SI(f+h)V(g+h) = fVI(g+h)l
+fV(g+h) = fVgl<|hl+]hl

This means that (f + h) V (g + hy) — f V g € Co(X). Hence,
we have [f]V [g] = [f'] V [¢’] forevery f’ € [f] and ¢’ € [g].
Similarly, we have [f] A [g] = [f'] A [g’] forevery f’ € [f] and
9’ € [g].

In what follows, X is assumed to be a proper metric space.
Then the remainder uX \ X of Samuel-Smirnov compactifica-
tion is compact. It should be remarked that C(uX) = C*(uX) =
U*(X), and C(uX \ X) = C*(uX \ X), in particular, C(uX \ X)
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is isomorphic to U*(X)/Co(X).
on U*(X)/Cop(X) can be considered as homomorphisms of the

Thus, the homomorphisms

continuous functions on the remainder of Samuel-Smirnov com-

pactification uX of X, that is,
H(U(X)/Co(X)) = H(C(uX \ X)).

As we have already seen, K(C*(uX \ X)) is a compact space
containing §(uX \ X) as a dense subspace. Since §(uX \ X)
is compact, K(C*(uX \ X)) is equivalent to 6(uX \ X), that is,
K(C*(uX \ X)) is homeomorphic to the remainder of Samuel-

Smirnov compactification of X, that is,
KU (X)/Co(X)) =uX \ X.

Let ¢ € H(U*(X)/Co(X)). If we define ¢(f) = ¢([f]) for
every f € U*(X), then ¢ becomes a homomorphism on U* (X)
with the property that ¢ (h) = 0 forevery h € Cy(X). Conversely,
if ¢ € H(U* (X)) satisfies ¢(h) = 0 for every h € Cp(X), then
the map ¢ : U*(X)/Co(X) — R defined by ¢([f]) = ¢(f)
is well-defined and becomes a homomorphism. Thus, we can
identify each homomorphism ¢ € H(U*(X)/Co(X)) with a ho-
momorphism ¢ € H(U* (X)) with ¢|c,x) = 0.

Now we consider the remainder uH \ H of the Samuel-Smirnov
compactification of the half-line, that is, the homomorphisms on
U*[Coy. Let ¢ € H(U™) be such that ¢|¢, = 0. By Corollary 12,

we can take an ultrafilter .# on Ny and ¢ € [0, 1] such that
=¢(1) - li +
$(f) ¢();%f@ n)

for every f € U*. If F is a fixed ultrafilter, then ¢ = ¢(1) - Spix
where x is the limit point of .%. Therefore, ¢ cannot be zero on
Co. If .7 is a free ultrafilter on Ny, then

lim h(c+n) =0
ZF(n)

for every h € Cy. Thus, these arguments give a lattice theoretic
proof of the following structure theorem, which is a one-ended

version of [7, Theorem 4.8]:

Theorem 13 The remainder uH\ H of the Samuel-Smirnov com-
pactification of the half-line is homeomorphic to the quotient
obtained from [0, 1] X (N \ No) after identifying each point of
the form (1, %) with (0,1 + 7).

Corollary 14 Each lattice homomorphism ¢ : U* /Cy — R has
the form

P([fD) =4 (1) -J;,igll)f(ﬁn) (fel)

where F is an free ultrafilter on Ng and ¢ € [0, 1]. Moreover,
(¢, F) and (d,9) induce the same homomorphism if and only If

c=1,d=0and 9 =1+ .7, or vice-versa.

Remark 15 In [7, Theorem 4.8], Woods proved that the re-
mainder uR \ R can be written as a union of two copies of



[0,1] X (Bw \ w) (where w is the countably infinite discrete
space), and that their intersection is a nowhere dense copy of
P \ w. Though we adopted Ny to describe the formula, it is of
course homeomorphic to w. Identification of two points (1,.%)
with (0, 1 +.%) given in Theorem 13 runs all over the free ultra-
filters of Ny. Thus, Theorem 13 provides a concrete description

of one end version of those given in [7].
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