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Let 𝐸 (3) be the third Johnson-Wilson spectrum at the prime five. In this note, we show that the generalized Smith-Toda
spectrum 𝑉2 = 𝑀 (5, 𝑣1, 𝑣

2
2) is a ring spectrum. Furthermore, we consider 𝐸2-terms of the 𝐸 (3)-based Adams spectra

sequence converging to the homotopy groups of the 𝐸 (3)-localization of 𝑉2.

1. Introduction
For a prime number 𝑝, we have the Brown-Peterson homology

theory 𝐵𝑃∗ (−) at 𝑝, whose coefficient algebra is

𝐵𝑃∗ = Z(𝑝) [𝑣1, 𝑣2, 𝑣3, . . . ] with |𝑣𝑖 | = 2(𝑝𝑖 − 1).

For an invariant regular ideal 𝐽𝑘 = (𝑝𝑒0 , 𝑣𝑒1
1 , . . . , 𝑣

𝑒𝑘−1
𝑘−1 ) of 𝐵𝑃∗, the

generalized Smith-Toda spectrum 𝑀𝐽𝑘 is defined by

𝐵𝑃∗ (𝑀𝐽𝑘 ) = 𝐵𝑃∗/𝐽𝑘 .

We know that the spectrum 𝑀 (𝑝, 𝑣1, 𝑣
𝑘
2 ) for 𝑝 ≥ 5 and 𝑘 ≥ 1

exists. At 𝑝 = 5, Ravenel showed that 𝑀 (5, 𝑣1, 𝑣2) has no ring
spectrum structure. The first main theorem in this note is the
following:

Theorem 1 The spectrum 𝑉2 = 𝑀 (5, 𝑣1, 𝑣
2
2) is a ring spectrum.

For 𝑛 > 0, we denote

𝐸 (𝑛)∗ = 𝑣−1
𝑛 𝐵𝑃∗/(𝑣𝑛+1, 𝑣𝑛+2, . . . ) = Z(𝑝) [𝑣1, 𝑣2, . . . , 𝑣𝑛−1, 𝑣

±1
𝑛 ] .

The 𝑛th Johnson-Wilson spectrum 𝐸 (𝑛) is a spectrum which rep-
resents the homology theory

𝐸 (𝑛)∗ (−) = 𝐸 (𝑛)∗ ⊗𝐵𝑃∗ 𝐵𝑃∗ (−) .

If 𝑘 ≤ 𝑛, then we may consider that 𝐽𝑘 is an invariant regular
ideal of 𝐸 (𝑛)∗, and the spectrum 𝑀𝐽𝑘 satisfies

𝐸 (𝑛)∗ (𝑀𝐽𝑘 ) = 𝐸 (𝑛)∗ ⊗𝐵𝑃∗ 𝐵𝑃∗ (𝑀𝐽𝑘 ) = 𝐸 (𝑛)∗/𝐽𝑘 .

Let 𝐿𝑛 denote the Bousfield localization functor with respect to
𝐸 (𝑛). The 𝐸 (𝑛)-based Adams spectral sequence for a spectrum
𝑋 is of the form

𝐸𝑠,𝑡2 = Ext𝑠,𝑡
𝐸 (𝑛)∗ (𝐸 (𝑛)) (𝐸 (𝑛)∗, 𝐸 (𝑛)∗ (𝑋 )) ⇒ 𝜋𝑡−𝑠 (𝐿𝑛𝑋 ).

Hereafter, we denote by 𝐸 (𝑛)𝑠,𝑡𝑟 (𝑋 ) the 𝐸𝑟 -term of the spectral
sequence.

We put 𝑘 (𝑛 − 1)∗ = Z/𝑝 [𝑣𝑛−1] and

(2) 𝐸𝑖 (𝑛,𝑚)∗ = Z/𝑝 [𝑣𝑛−1, 𝑣
±𝑝𝑚
𝑛 ]/(𝑣𝑖𝑛−1)

for 𝑖 ≥ 1, 𝑚 ≥ 0 and 𝑛 ≥ 2. The second main theorem in this
note is the following:

Theorem 3 Assume 𝑝 = 5. As a 𝑘 (2)∗-module, 𝐸 (3)𝑠,∗2 (𝑉2) for
𝑠 ≤ 2 is the following:

𝐸 (3)0,∗
2 (𝑉2) = 𝐸1 (3, 1)∗{𝑣2𝑣

𝑡
3 : 𝑡 = 1, 2, 3, 4} ⊕ 𝐸2 (3, 1)∗,

𝐸 (3)1,∗
2 (𝑉2) = 𝐸1 (3, 1)∗{𝑣𝑡−1

3 ℎ2, 𝑣2𝑣
𝑡
3𝜁3 : 𝑡 = 1, 2, 3, 4}

⊕𝐸2 (3, 0)∗{ℎ0, ℎ1} ⊕ 𝐸2 (3, 1)∗{𝑣−1
3 ℎ2, 𝜁3},

𝐸 (3)2,∗
2 (𝑉2) = 𝐸1 (3, 1)∗{𝑣𝑡−1

3 𝜁3, 𝑣2𝑣
𝑡
3𝑏𝑖 , 𝑣2𝑣

𝑡
3𝑔𝑖 , 𝑣2𝑣

𝑡
3𝑘𝑖 : 𝑖 = 0, 1, 2, 𝑡 = 1, 2, 3, 4}

⊕𝐸2 (3, 0)∗{ℎ0𝜁3, ℎ1𝜁3} ⊕ 𝐸2 (3, 1)∗{𝑏𝑖 , 𝑔𝑖 , 𝑘𝑖 , 𝑣−1
3 𝜁3 : 𝑖 = 0, 1, 2}.

Here, the generators have the following internal degrees:

|ℎ𝑖 | = 8 · 5𝑖 , |𝜁3 | = 0, |𝜁3ℎ𝑖 | = 8 · 5𝑖 ,
|𝑏𝑖 | = 8 · 5𝑖+1, |𝑔𝑖 | = 56 · 5𝑖 and |𝑘𝑖 | = 88 · 5𝑖 .

Acknowledgements. The author thanks to Katsumi Shimomura
and Hiroki Okajima for many useful comments.

2. The ring structure on𝑉2 = 𝑀 (5, 𝑣1, 𝑣
2
2)

We begin with a little stronger theorem than [1, Th. 1].

Theorem 4 Let X be a ring spectrum with a multiplication
𝜇 : 𝑋 ∧ 𝑋 → 𝑋 , and let 𝑓 : Σ |𝑓 |𝑋 → 𝑋 with |𝑓 | even. Sup-
pose that:

1. The composite

Σ |𝑓 |𝑋 ∧𝐶 (𝑓 )
𝑓 ∧1𝐶 (𝑓 )−−−−−−→ 𝑋 ∧𝐶 (𝑓 ) 𝑚−→ 𝐶 (𝑓 )

is trivial. Here, 𝐶 (𝑓 ) is the cofiber of 𝑓 and the map 𝑚
is the 𝑋 -module structure on𝐶 (𝑓 ) obtained from the next
condition.
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2. The diagram

Σ |𝑓 |𝑋 ∧ 𝑋
1𝑋∧𝑓

−−−−−−→ 𝑋 ∧ 𝑋

𝜇y y𝜇

Σ |𝑓 |𝑋
𝑓

−−−−−−→ 𝑋

commutes.

Then, 𝐶 (𝑓 ) has a ring structure so that the inclusion map
𝜄 : 𝑋 → 𝐶 (𝑓 ) is a map of ring spectra.

Proof. The proof is standard and identical to that of [1, Th. 1].
Let 𝜂 : 𝑆0 → 𝑋 be the unit map on 𝑋 . The hypothesis (2) im-
plies the existence of a map𝑚′ : 𝑋 ∧𝐶 (𝑓 ) → 𝐶 (𝑓 ) fitting in the
commutative diagram

Σ |𝑓 |𝑆0 ∧ 𝑋
1𝑆0∧𝑓

−−−−−−→ 𝑆0 ∧ 𝑋 −−−−−−→ 𝑆0 ∧𝐶 (𝑓 ) −−−−−−→ Σ |𝑓 |+1𝑆0 ∧ 𝑋

𝜂∧1𝑋
y y𝜂∧1𝑋

y𝜂∧1𝐶 (𝑓 )
y𝜂∧1𝑋

Σ |𝑓 |𝑋 ∧ 𝑋
1𝑋∧𝑓

−−−−−−→ 𝑋 ∧ 𝑋 −−−−−−→ 𝑋 ∧𝐶 (𝑓 ) −−−−−−→ Σ |𝑓 |+1𝑋 ∧ 𝑋

𝜇y y𝜇 y𝑚′ y𝜇
Σ |𝑓 |𝑋

𝑓
−−−−−−→ 𝑋 −−−−−−→ 𝐶 (𝑓 ) −−−−−−→ Σ |𝑓 |+1𝑋,

in which the rows are cofiber sequences. Since 𝑚′(𝜂 ∧ 1𝐶 (𝑓 ) )
is an automorphism of 𝐶 (𝑓 ), we put𝑚 = (𝑚′(𝜂 ∧ 1𝐶 (𝑓 ) ))−1𝑚′.
Then,𝑚(𝜂 ∧ 1𝐶 (𝑓 ) ) = 1𝐶 (𝑓 ) .

By the hypothesis (1), we have a map 𝜇 ′ : 𝐶 (𝑓 )∧𝐶 (𝑓 ) → 𝐶 (𝑓 )
such that 𝜇 ′(𝜄 ∧ 1𝐶 (𝑓 ) ) =𝑚. Put also 𝜂 ′ = 𝜄𝜂 : 𝑆0 → 𝐶 (𝑓 ) for the
inclusion 𝜄 : 𝑋 → 𝐶 (𝑓 ). Then, we have a commutative diagram

∗ −−−−−−→ 𝑆0 ∧𝐶 (𝑓 ) 𝑆0 ∧𝐶 (𝑓 )y y𝜂∧1𝐶 (𝑓 )
y𝜂′∧1𝐶 (𝑓 )

Σ2 |𝑓 |𝑋 ∧𝐶 (𝑓 )
𝑓 ∧1𝐶 (𝑓 )−−−−−−→ 𝑋 ∧𝐶 (𝑓 )

𝜄∧1𝐶 (𝑓 )−−−−−−→ 𝐶 (𝑓 ) ∧𝐶 (𝑓 )y y𝑚 y𝜇′

∗ −−−−−−→ 𝐶 (𝑓 ) 𝐶 (𝑓 ),
Therefore, we obtain the ring structure map on 𝐶 (𝑓 ) so that 𝜄 is
a map of ring spectra. □

From now on, we work at the prime five. We consider the mod
five Moore spectrum 𝑀 and the first Smith-Toda spectrum 𝑉 (1)
defined by the cofiber sequences

𝑆0 5−→ 𝑆0 𝑖−→ 𝑀
𝑗−→ 𝑆1 and Σ8𝑀

𝛼−→ 𝑀
𝑖1−→ 𝑉 (1) 𝑗1−→ Σ9𝑀

for the Adams map 𝛼 . For 𝑋 and 𝑓 in Theorem 4, we set

𝑋 = 𝑉 (1) and 𝑓 = 𝛽 : Σ48𝑉 (1) → 𝑉 (1).

Here, 𝛽 is the 𝑣2-periodic map due to L. Smith. We notice that
𝑉 (1) is a commutative associative ring spectrum (cf. [2, Remark
3.9]), and 𝛽 satisfies the condition (2) of Theorem 4 by [2, p. 41].
Consider the cofiber sequences

(5) Σ48𝑡𝑉 (1)
𝛽𝑡

−−→ 𝑉 (1)
𝑖′𝑡−→ 𝑉𝑡

𝑗 ′𝑡−→ Σ48𝑡+1𝑉 (1).

Then, the cofiber 𝐶 (𝛽2) is 𝑉2 = 𝑀 (5, 𝑣1, 𝑣
2
2) and we have the

𝑉 (1)-module structure𝑚 : 𝑉 (1) ∧𝑉2 → 𝑉2 on 𝑉2 obtained from
the condition (2) so that

(6) 𝑖 ′2𝜇1 =𝑚(1𝑉 (1) ∧ 𝑖 ′2),

where 𝜇1 : 𝑉 (1) ∧ 𝑉 (1) → 𝑉 (1) denotes the multiplication of
the ring spectrum𝑉 (1). Furthermore, Verdier’s axiom gives rise
to a cofiber sequence

(7) Σ48𝑉1
𝜆−→ 𝑉2

𝜌
−→ 𝑉1 → Σ49𝑉1

from the cofiber sequences (5) for 𝑡 ∈ {1, 2} so that

(8) 𝜆𝑖 ′1 = 𝑖 ′2𝛽 and 𝜌𝑖 ′2 = 𝑖 ′1.

Lemma 9 [𝑉 (1) ∧𝑉2,𝑉2]48 = Z/5
{
𝑚(1𝑉 (1) ∧ 𝜆𝜌)

}
.

Proof. From [5, Th. 3.6], for degree < 187, we obtain
(10)
[𝑉 (1),𝑉2]∗ � 𝑃 (𝛽, 𝛽 ′)/(𝛽2) ⊗ 𝐴 ⊗ 𝐸 (𝛿0) ⊕ 𝑃 (𝛽, 𝛽 ′)/(𝛽2) ⊗ 𝐵,

where |𝛽 ′ | = 38, |𝛿0 | = −10, 𝐴 is a Z/5-module generated by six
elements of degrees

0, 7, 39, 54, 86 and 93,

and 𝐵 is a Z/5-module generated by eight elements of degrees

−9, 6, 30, 38, 45, 53, 77 and 92.

In [2, Remark 3.9], it is shown

𝑉 (1) ∧𝑉 (1) = 𝑉 (1) ∨ (Σ𝐿1 ∧𝑉 (1)) ∨ Σ10𝑉 (1)

for the cofiber 𝐿1 of 𝛼1 ∈ 𝜋7 (𝑆0). ([2, Remark 3.9] has a typo:
𝑠𝑝 + 2 is actually 𝑠𝑞 + 2.) By this decomposition together with
(10), we obtain

[𝑉 (1)∧𝑉 (1),𝑉2]145 = 0 and [𝑉 (1)∧𝑉 (1),𝑉2]48 = Z/5{𝑖 ′2𝛽𝜇1}.

It follows that 𝑖 ′2 induces the monomorphism

(1𝑉 (1)∧𝑖 ′2)∗ : [𝑉 (1)∧𝑉2,𝑉2]48 → [𝑉 (1)∧𝑉 (1),𝑉2]48 = Z/5{𝑖 ′2𝛽𝜇1}.

For the element𝑚(1𝑉 (1) ∧ 𝜆𝜌) ∈ [𝑉 (1) ∧𝑉2,𝑉2]48, we compute
by (6) and (8):

(1𝑉 (1) ∧ 𝑖 ′2)∗ (𝑚(1𝑉 (1) ∧ 𝜆𝜌)) =𝑚(1𝑉 (1) ∧ 𝜆𝜌)(1𝑉 (1) ∧ 𝑖 ′2) =𝑚(1𝑉 (1) ∧ 𝜆𝜌𝑖 ′2)
=𝑚(1𝑉 (1) ∧ 𝜆𝑖 ′1) =𝑚(1𝑉 (1) ∧ 𝑖 ′2𝛽)
=𝑚(1𝑉 (1) ∧ 𝑖 ′2)(1𝑉 (1) ∧ 𝛽) = 𝑖 ′2𝜇1 (1𝑉 (1) ∧ 𝛽)
= 𝑖 ′2𝛽𝜇1.

Thus, we see that (1𝑉 (1) ∧ 𝑖 ′2)∗ is an isomorphism and the lemma
follows. □

Proof of Theorem 1. It suffices to show that 𝑋 = 𝑉 (1) and
𝑓 = 𝛽 satisfy the condition (1) in Theorem 4. Consider the ele-
ment𝑚(𝛽 ∧ 1𝑉2 ) ∈ [𝑉 (1) ∧𝑉2,𝑉2]48. Then, by Lemma 9, there
exists 𝑥 ∈ Z/5 such that

𝑚(𝛽 ∧ 1𝑉2 ) = 𝑥𝑚(1𝑉 (1) ∧ 𝜆𝜌).
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Now we verify the condition (1) by computation

𝑚(𝛽2 ∧ 1𝑉2 ) =𝑚(𝛽 ∧ 1𝑉2 ) (𝛽 ∧ 1𝑉2 )
= 𝑥𝑚(1𝑉 (1) ∧ 𝜆𝜌)(𝛽 ∧ 1𝑉2)
= 𝑥𝑚(𝛽 ∧ 1𝑉2 ) (1𝑉 (1) ∧ 𝜆𝜌)
= 𝑥2𝑚(1𝑉 (1) ∧ 𝜆𝜌) (1𝑉 (1) ∧ 𝜆𝜌)
= 𝑥2𝑚(1𝑉 (1) ∧ 𝜆𝜌𝜆𝜌)
= 0,

since 𝜌𝜆 = 0 by (7). □

3. 𝐸 (3)𝑠,∗2 (𝑀 (5, 𝑣1, 𝑣2)) for 𝑠 ≤ 2
Let 𝐸 (3) be the third Johnson-Wilson spectrum at 𝑝 = 5. For

an 𝐸 (3)∗ (𝐸 (3))-comodule 𝑀 , we denote

𝐻𝑠𝑀 = Ext𝑠,∗
𝐸 (3)∗ (𝐸 (3)) (𝐸 (3)∗, 𝑀).

Put 𝐾 (3)∗ = 𝐸 (3)∗/(5, 𝑣1, 𝑣2) = Z/5[𝑣±1
3 ], and we have

𝐻𝑠𝐾 (3)∗ = 𝐸 (3)𝑠,∗2 (𝑀 (5, 𝑣1, 𝑣2)) .

From [3, Th. 6.3.34], we obtain the structure of 𝐻𝑠𝑀0
3 . In par-

ticular,

𝐻 0𝐾 (3)∗ = 𝐾 (3)∗,
𝐻 1𝐾 (3)∗ = 𝐾 (3)∗{ℎ𝑖 , 𝜁3 : 𝑖 = 0, 1, 2},
𝐻 2𝐾 (3)∗ = 𝐾 (3)∗{ℎ𝑖𝜁3, 𝑏𝑖 , 𝑔𝑖 , 𝑘𝑖 : 𝑖 = 0, 1, 2}.

(Remark that Ravenel used ℎ1,𝑖 and 𝑏1,𝑖 instead of ℎ𝑖 and 𝑏𝑖 , re-
spectively.) We also note that [4, 2.7 Th.] implies that 𝐻 3𝐾 (3)∗
contains a subspace generated by

ℎ𝑖𝑏𝑖 and ℎ𝑖𝑏𝑖+2 for 𝑖 ∈ Z/3.

By the argument of [4, p.954], in 𝐻 3𝑆 (3)∗, we have

ℎ𝑖𝑏𝑖+1 = ℎ𝑖 ⟨ℎ𝑖+1, ℎ𝑖+2, ℎ𝑖 , ℎ𝑖+1⟩ = ⟨ℎ𝑖 , ℎ𝑖+1, ℎ𝑖+2, ℎ𝑖⟩ℎ𝑖+1 = 𝑏𝑖ℎ𝑖+1.

For 𝐸 (3)∗ = Z(5) [𝑣1, 𝑣2, 𝑣
±1
3 ], we consider the subquotient

𝐸𝑖 (3,𝑚)∗ = Z/5[𝑣2, 𝑣
±5𝑚
3 ]/(𝑣𝑖2).

In particular, 𝐾 (3)∗ = 𝐸1 (3, 0)∗. Furthermore,

𝐻𝑠𝐸2 (3, 0)∗ = 𝐸 (3)𝑠,∗2 (𝑉2)

for 𝑉2 = 𝑀 (5, 𝑣1, 𝑣
2
2). The short exact sequence

0 → 𝐾 (3)∗
𝑣2−→ 𝐸2 (3, 0)∗ → 𝐾 (3)∗ → 0

gives rise to the connecting homomorphism

𝜕𝑠 : 𝐻𝑠𝐾 (3)∗ → 𝐻𝑠+1𝐾 (3)∗,

It is easy to see the following lemma:

Lemma 11 Let 𝑡 ∈ Z.

𝜕0 (𝑣𝑡3) =
{
𝑡𝑣𝑡−1

3 ℎ2 5 ∤ 𝑡,
0 5 | 𝑡,

𝜕1 (𝑣𝑡3ℎ𝑖 ) = 0 for any 𝑡,

𝜕1 (𝑣𝑡3𝜁3) =
{
𝑡𝑣𝑡−1

3 ℎ2𝜁3 5 ∤ 𝑡,
0 5 | 𝑡,

𝜕2 (𝑣𝑡3ℎ𝑖𝜁3) = 0 for any 𝑡,

𝜕2 (𝑣𝑡3𝑏𝑖 ) =
{
𝑡𝑣𝑡−1

3 ℎ2𝑏𝑖 5 ∤ 𝑡,
0 5 | 𝑡,

𝜕2 (𝑣𝑡3𝑔𝑖 ) =
{
𝑡𝑣𝑡−1

3 ℎ2𝑔1 𝑡 ∤ 5 and 𝑖 = 1,
0 otherwise

𝜕2 (𝑣𝑡3𝑘𝑖 ) =
{
𝑡𝑣𝑡−1

3 ℎ2𝑘2

(
= 𝑡𝑣𝑡−1

3 𝑔2ℎ0

)
𝑡 ∤ 5 and 𝑖 = 2,

0 otherwise.

Proof of Theorem 3. Consider the exact sequence

𝐻𝑠−1𝐾 (3)∗
𝜕𝑠−1−−−→ 𝐻𝑠𝐾 (3)∗

(𝑣2)∗−−−−→ 𝐻𝑠𝐸2 (3, 0)∗ → 𝐻𝑠𝐾 (3)∗
𝜕𝑠−→ 𝐻𝑠+1𝐾 (3)∗.

From Lemma 11, we obtain

𝐻 0𝐾 (3)∗ = 𝐾 (3)∗,
Ker(𝜕0) = Z/5[𝑣±5

3 ],
Coker(𝜕0) = 𝐾 (3)∗{ℎ0, ℎ1, 𝜁3} ⊕ Z/5[𝑣±5

3 ]{𝑣−1
3 ℎ2},

Ker(𝜕1) = 𝐾 (3)∗{ℎ𝑖 : 𝑖 = 0, 1, 2} ⊕ Z/5[𝑣±5
3 ]{𝜁3},

Coker(𝜕1) = 𝐾 (3)∗{ℎ0𝜁3, ℎ1𝜁3, 𝑏𝑖 , 𝑔𝑖 , 𝑘𝑖 : 𝑖 ∈ Z/3} ⊕ Z/5[𝑣±5
3 ]{𝑣−1

3 ℎ2𝜁3},
Ker(𝜕2) = 𝐾 (3)∗{ℎ𝑖𝜁3 : 𝑖 = 0, 1, 2} ⊕ Z/5[𝑣±5

3 ]{𝑏𝑖 , 𝑔𝑖 , 𝑘𝑖 : 𝑖 = 0, 1, 2}.

We have the isomorphism

𝐻𝑠𝐸2 (3, 0)∗ = 𝑣2Coker(𝜕𝑠−1) ⊕ Ker(𝜕𝑠 ),

of Z/5-vector spaces. Therefore

𝐻 0𝐸2 (3, 0)∗ = 𝐸1 (3, 1)∗{𝑣2𝑣
𝑡
3 : 𝑡 = 1, 2, 3, 4} ⊕ 𝐸2 (3, 1)∗,

𝐻 1𝐸2 (3, 0)∗ = 𝐸1 (3, 1)∗{𝑣𝑡−1
3 ℎ2, 𝑣2𝑣

𝑡
3𝜁3 : 𝑡 = 1, 2, 3, 4}

⊕𝐸2 (3, 0)∗{ℎ0, ℎ1} ⊕ 𝐸2 (3, 1)∗{𝑣−1
3 ℎ2, 𝜁3},

𝐻 2𝐸2 (3, 0)∗ = 𝐸1 (3, 1)∗{𝑣𝑡−1
3 𝜁3, 𝑣2𝑣

𝑡
3𝑏𝑖 , 𝑣2𝑣

𝑡
3𝑔𝑖 , 𝑣2𝑣

𝑡
3𝑘𝑖 : 𝑖 = 0, 1, 2, 𝑡 = 1, 2, 3, 4}

⊕𝐸2 (3, 0)∗{ℎ0𝜁3, ℎ1𝜁3} ⊕ 𝐸2 (3, 1)∗{𝑏𝑖 , 𝑔𝑖 , 𝑘𝑖 , 𝑣−1
3 𝜁3 : 𝑖 = 0, 1, 2}.

□
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