Lower lines of the E(3)-based Adams E_2 -term for $M(5, v_1, v_2^2)$

Ryo KATO*

Let E(3) be the third Johnson-Wilson spectrum at the prime five. In this note, we show that the generalized Smith-Toda spectrum $V_2 = M(5, v_1, v_2^2)$ is a ring spectrum. Furthermore, we consider E_2 -terms of the E(3)-based Adams spectra sequence converging to the homotopy groups of the E(3)-localization of V_2 .

1. Introduction

For a prime number p, we have the Brown-Peterson homology theory $BP_*(-)$ at p, whose coefficient algebra is

$$BP_* = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \dots]$$
 with $|v_i| = 2(p^i - 1)$.

For an invariant regular ideal $J_k = (p^{e_0}, v_1^{e_1}, \dots, v_{k-1}^{e_{k-1}})$ of BP_* , the generalized Smith-Toda spectrum MJ_k is defined by

$$BP_*(MJ_k) = BP_*/J_k$$
.

We know that the spectrum $M(p, v_1, v_2^k)$ for $p \ge 5$ and $k \ge 1$ exists. At p = 5, Ravenel showed that $M(5, v_1, v_2)$ has no ring spectrum structure. The first main theorem in this note is the following:

Theorem 1 The spectrum $V_2 = M(5, v_1, v_2^2)$ is a ring spectrum.

For n > 0, we denote

$$E(n)_* = v_n^{-1} BP_* / (v_{n+1}, v_{n+2}, \dots) = \mathbb{Z}_{(p)} [v_1, v_2, \dots, v_{n-1}, v_n^{\pm 1}].$$

The nth Johnson-Wilson spectrum E(n) is a spectrum which represents the homology theory

$$E(n)_*(-) = E(n)_* \otimes_{BP_*} BP_*(-).$$

If $k \le n$, then we may consider that J_k is an invariant regular ideal of $E(n)_*$, and the spectrum MJ_k satisfies

$$E(n)_*(MJ_k) = E(n)_* \otimes_{BP_*} BP_*(MJ_k) = E(n)_*/J_k.$$

Let L_n denote the Bousfield localization functor with respect to E(n). The E(n)-based Adams spectral sequence for a spectrum X is of the form

$$E_2^{s,t} = \operatorname{Ext}_{E(n)_*(E(n))}^{s,t}(E(n)_*, E(n)_*(X)) \Rightarrow \pi_{t-s}(L_n X).$$

Hereafter, we denote by $E(n)_r^{s,t}(X)$ the E_r -term of the spectral sequence.

We put $k(n-1)_* = \mathbb{Z}/p[v_{n-1}]$ and

(2)
$$E_i(n,m)_* = \mathbb{Z}/p[v_{n-1}, v_n^{\pm p^m}]/(v_{n-1}^i)$$

for $i \ge 1$, $m \ge 0$ and $n \ge 2$. The second main theorem in this note is the following:

Theorem 3 Assume p = 5. As a $k(2)_*$ -module, $E(3)_2^{s,*}(V_2)$ for $s \le 2$ is the following:

$$\begin{split} E(3)_2^{0,*}(V_2) &= E_1(3,1)_* \{ v_2 v_3^t \colon t = 1,2,3,4 \} \oplus E_2(3,1)_*, \\ E(3)_2^{1,*}(V_2) &= E_1(3,1)_* \{ v_3^{t-1} h_2, v_2 v_3^t \zeta_3 \colon t = 1,2,3,4 \} \\ &\oplus E_2(3,0)_* \{ h_0, h_1 \} \oplus E_2(3,1)_* \{ v_3^{-1} h_2, \zeta_3 \}, \\ E(3)_2^{2,*}(V_2) &= E_1(3,1)_* \{ v_3^{t-1} \zeta_3, v_2 v_3^t b_i, v_2 v_3^t g_i, v_2 v_3^t k_i \colon i = 0,1,2,\ t = 1,2,3,4 \} \\ &\oplus E_2(3,0)_* \{ h_0 \zeta_3, h_1 \zeta_3 \} \oplus E_2(3,1)_* \{ b_i, g_i, k_i, v_3^{-1} \zeta_3 \colon i = 0,1,2 \}. \end{split}$$

Here, the generators have the following internal degrees:

$$|h_i| = 8 \cdot 5^i$$
, $|\zeta_3| = 0$, $|\zeta_3 h_i| = 8 \cdot 5^i$,
 $|b_i| = 8 \cdot 5^{i+1}$, $|g_i| = 56 \cdot 5^i$ and $|k_i| = 88 \cdot 5^i$.

Acknowledgements. The author thanks to Katsumi Shimomura and Hiroki Okajima for many useful comments.

2. The ring structure on $V_2 = M(5, v_1, v_2^2)$

We begin with a little stronger theorem than [1, Th. 1].

Theorem 4 Let X be a ring spectrum with a multiplication $\mu\colon X\wedge X\to X$, and let $f\colon \Sigma^{|f|}X\to X$ with |f| even. Suppose that:

1. The composite

$$\Sigma^{|f|}X \wedge C(f) \xrightarrow{f \wedge 1_{C(f)}} X \wedge C(f) \xrightarrow{m} C(f)$$

is trivial. Here, C(f) is the cofiber of f and the map m is the X-module structure on C(f) obtained from the next condition.

Received Oct. 1, 2021

^{*} Faculty of Fundamental Science, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580, Japan

2. The diagram

$$\begin{array}{ccc} \Sigma^{|f|}X \wedge X & \xrightarrow{1_X \wedge f} & X \wedge X \\ & \mu \! \! \! \downarrow & & \! \! \! \! \! \downarrow \mu \\ & \Sigma^{|f|}X & \xrightarrow{f} & X \end{array}$$

commutes.

Then, C(f) has a ring structure so that the inclusion map $\iota \colon X \to C(f)$ is a map of ring spectra.

Proof. The proof is standard and identical to that of [1, Th. 1]. Let $\eta: S^0 \to X$ be the unit map on X. The hypothesis (2) implies the existence of a map $m': X \land C(f) \to C(f)$ fitting in the commutative diagram

in which the rows are cofiber sequences. Since $m'(\eta \wedge 1_{C(f)})$ is an automorphism of C(f), we put $m = (m'(\eta \wedge 1_{C(f)}))^{-1}m'$. Then, $m(\eta \wedge 1_{C(f)}) = 1_{C(f)}$.

By the hypothesis (1), we have a map $\mu' : C(f) \wedge C(f) \to C(f)$ such that $\mu'(\iota \wedge 1_{C(f)}) = m$. Put also $\eta' = \iota \eta : S^0 \to C(f)$ for the inclusion $\iota : X \to C(f)$. Then, we have a commutative diagram

$$\begin{array}{cccc}
* & \longrightarrow & S^0 \wedge C(f) & \Longrightarrow & S^0 \wedge C(f) \\
\downarrow & & & \downarrow \eta \wedge 1_{C(f)} & & \downarrow \eta' \wedge 1_{C(f)} \\
\Sigma^{2|f|} X \wedge C(f) & \xrightarrow{f \wedge 1_{C(f)}} & X \wedge C(f) & \xrightarrow{\iota \wedge 1_{C(f)}} & C(f) \wedge C(f) \\
\downarrow & & \downarrow m & \downarrow \mu' \\
* & \longrightarrow & C(f) & \Longrightarrow & C(f),
\end{array}$$

Therefore, we obtain the ring structure map on C(f) so that ι is a map of ring spectra. \square

From now on, we work at the prime five. We consider the mod five Moore spectrum M and the first Smith-Toda spectrum V(1) defined by the cofiber sequences

$$S^0 \xrightarrow{5} S^0 \xrightarrow{i} M \xrightarrow{j} S^1$$
 and $\Sigma^8 M \xrightarrow{\alpha} M \xrightarrow{i_1} V(1) \xrightarrow{j_1} \Sigma^9 M$

for the Adams map α . For X and f in Theorem 4, we set

$$X = V(1)$$
 and $f = \beta \colon \Sigma^{48}V(1) \to V(1)$.

Here, β is the v_2 -periodic map due to L. Smith. We notice that V(1) is a commutative associative ring spectrum (*cf.* [2, Remark 3.9]), and β satisfies the condition (2) of Theorem 4 by [2, p. 41]. Consider the cofiber sequences

(5)
$$\Sigma^{48t}V(1) \xrightarrow{\beta^t} V(1) \xrightarrow{i'_t} V_t \xrightarrow{j'_t} \Sigma^{48t+1}V(1).$$

Then, the cofiber $C(\beta^2)$ is $V_2 = M(5, v_1, v_2^2)$ and we have the V(1)-module structure $m: V(1) \wedge V_2 \rightarrow V_2$ on V_2 obtained from the condition (2) so that

(6)
$$i_2' \mu_1 = m(1_{V(1)} \wedge i_2'),$$

where $\mu_1 \colon V(1) \wedge V(1) \to V(1)$ denotes the multiplication of the ring spectrum V(1). Furthermore, Verdier's axiom gives rise to a cofiber sequence

(7)
$$\Sigma^{48}V_1 \xrightarrow{\lambda} V_2 \xrightarrow{\rho} V_1 \to \Sigma^{49}V_1$$

from the cofiber sequences (5) for $t \in \{1, 2\}$ so that

(8)
$$\lambda i_1' = i_2' \beta \quad \text{and} \quad \rho i_2' = i_1'.$$

Lemma 9 $[V(1) \wedge V_2, V_2]_{48} = \mathbb{Z}/5 \{ m(1_{V(1)} \wedge \lambda \rho) \}.$

Proof. From [5, Th. 3.6], for degree < 187, we obtain (10)

$$[V(1), V_2]_* \cong P(\beta, \beta')/(\beta^2) \otimes A \otimes E(\delta_0) \oplus P(\beta, \beta')/(\beta^2) \otimes B,$$

where $|\beta'| = 38$, $|\delta_0| = -10$, A is a $\mathbb{Z}/5$ -module generated by six elements of degrees

and B is a $\mathbb{Z}/5$ -module generated by eight elements of degrees

In [2, Remark 3.9], it is shown

$$V(1) \wedge V(1) = V(1) \vee (\Sigma L_1 \wedge V(1)) \vee \Sigma^{10} V(1)$$

for the cofiber L_1 of $\alpha_1 \in \pi_7(S^0)$. ([2, Remark 3.9] has a typo: sp + 2 is actually sq + 2.) By this decomposition together with (10), we obtain

$$[V(1) \land V(1), V_2]_{145} = 0$$
 and $[V(1) \land V(1), V_2]_{48} = \mathbb{Z}/5\{i_2'\beta\mu_1\}.$

It follows that i_2' induces the monomorphism

$$(1_{V(1)} \wedge i_2')^* : [V(1) \wedge V_2, V_2]_{48} \rightarrow [V(1) \wedge V(1), V_2]_{48} = \mathbb{Z}/5\{i_2'\beta\mu_1\}.$$

For the element $m(1_{V(1)} \wedge \lambda \rho) \in [V(1) \wedge V_2, V_2]_{48}$, we compute by (6) and (8):

$$\begin{aligned} (1_{V(1)} \wedge i_2')^* (m(1_{V(1)} \wedge \lambda \rho)) &= m(1_{V(1)} \wedge \lambda \rho) (1_{V(1)} \wedge i_2') = m(1_{V(1)} \wedge \lambda \rho i_2') \\ &= m(1_{V(1)} \wedge \lambda i_1') = m(1_{V(1)} \wedge i_2' \beta) \\ &= m(1_{V(1)} \wedge i_2') (1_{V(1)} \wedge \beta) = i_2' \mu_1 (1_{V(1)} \wedge \beta) \\ &= i_2' \beta \mu_1. \end{aligned}$$

Thus, we see that $(1_{V(1)} \wedge i_2')^*$ is an isomorphism and the lemma follows. \Box

Proof of Theorem 1. It suffices to show that X = V(1) and $f = \beta$ satisfy the condition (1) in Theorem 4. Consider the element $m(\beta \wedge 1_{V_2}) \in [V(1) \wedge V_2, V_2]_{48}$. Then, by Lemma 9, there exists $x \in \mathbb{Z}/5$ such that

$$m(\beta \wedge 1_{V_2}) = xm(1_{V(1)} \wedge \lambda \rho).$$

Now we verify the condition (1) by computation

$$m(\beta^{2} \wedge 1_{V_{2}}) = m(\beta \wedge 1_{V_{2}})(\beta \wedge 1_{V_{2}})$$

$$= xm(1_{V(1)} \wedge \lambda \rho)(\beta \wedge 1_{V_{2}})$$

$$= xm(\beta \wedge 1_{V_{2}})(1_{V(1)} \wedge \lambda \rho)$$

$$= x^{2}m(1_{V(1)} \wedge \lambda \rho)(1_{V(1)} \wedge \lambda \rho)$$

$$= x^{2}m(1_{V(1)} \wedge \lambda \rho \lambda \rho)$$

$$= 0.$$

since $\rho \lambda = 0$ by (7). \Box

3. $E(3)_2^{s,*}(M(5,v_1,v_2))$ for $s \le 2$

Let E(3) be the third Johnson-Wilson spectrum at p = 5. For an $E(3)_*(E(3))$ -comodule M, we denote

$$H^{s}M = \operatorname{Ext}_{E(3)_{*}(E(3))}^{s,*}(E(3)_{*}, M).$$

Put $K(3)_* = E(3)_*/(5, v_1, v_2) = \mathbb{Z}/5[v_3^{\pm 1}]$, and we have

$$H^{s}K(3)_{*} = E(3)_{2}^{s,*}(M(5, v_{1}, v_{2})).$$

From [3, Th. 6.3.34], we obtain the structure of $H^sM_3^0$. In particular,

$$H^0K(3)_* = K(3)_*,$$

 $H^1K(3)_* = K(3)_*\{h_i, \zeta_3 : i = 0, 1, 2\},$
 $H^2K(3)_* = K(3)_*\{h_i\zeta_3, b_i, q_i, k_i : i = 0, 1, 2\}.$

(Remark that Ravenel used $h_{1,i}$ and $b_{1,i}$ instead of h_i and b_i , respectively.) We also note that [4, 2.7 Th.] implies that $H^3K(3)_*$ contains a subspace generated by

$$h_i b_i$$
 and $h_i b_{i+2}$ for $i \in \mathbb{Z}/3$.

By the argument of [4, p.954], in $H^3S(3)_*$, we have

$$h_i b_{i+1} = h_i \langle h_{i+1}, h_{i+2}, h_i, h_{i+1} \rangle = \langle h_i, h_{i+1}, h_{i+2}, h_i \rangle h_{i+1} = b_i h_{i+1}.$$

For $E(3)_* = \mathbb{Z}_{(5)}[v_1, v_2, v_3^{\pm 1}]$, we consider the subquotient

$$E_i(3, m)_* = \mathbb{Z}/5[v_2, v_3^{\pm 5^m}]/(v_2^i).$$

In particular, $K(3)_* = E_1(3,0)_*$. Furthermore,

$$H^{s}E_{2}(3,0)_{*} = E(3)_{2}^{s,*}(V_{2})$$

for $V_2 = M(5, v_1, v_2^2)$. The short exact sequence

$$0 \to K(3)_* \xrightarrow{v_2} E_2(3,0)_* \to K(3)_* \to 0$$

gives rise to the connecting homomorphism

$$\partial_s: H^sK(3)_* \to H^{s+1}K(3)_*,$$

It is easy to see the following lemma:

Lemma 11 Let $t \in \mathbb{Z}$.

$$\partial_0(v_3^t) = \begin{cases} t v_3^{t-1} h_2 & 5 \nmid t, \\ 0 & 5 \mid t, \end{cases}$$

$$\partial_1(v_3^t h_i) = 0$$
 for any t ,

$$\partial_1(v_3^t\zeta_3) = \begin{cases} tv_3^{t-1}h_2\zeta_3 & 5 \nmid t, \\ 0 & 5 \mid t, \end{cases}$$

$$\partial_2(v_3^t h_i \zeta_3) = 0$$
 for any t_3

$$\partial_2(v_3^t b_i) = \begin{cases} t v_3^{t-1} h_2 b_i & 5 \nmid t, \\ 0 & 5 \mid t, \end{cases}$$

$$\partial_2(v_3^t g_i) = \begin{cases} tv_3^{t-1} h_2 g_1 & t \nmid 5 \text{ and } i = 1, \\ 0 & \text{otherwise} \end{cases}$$

$$\partial_2(v_3^t k_i) = \begin{cases} t v_3^{t-1} h_2 k_2 \left(= t v_3^{t-1} g_2 h_0\right) & t \nmid 5 \text{ and } i = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Proof of Theorem 3. Consider the exact sequence

$$H^{s-1}K(3)_* \xrightarrow{\partial_{s-1}} H^sK(3)_* \xrightarrow{(v_2)_*} H^sE_2(3,0)_* \to H^sK(3)_* \xrightarrow{\partial_s} H^{s+1}K(3)_*.$$

From Lemma 11, we obtain

$$H^0K(3)_* = K(3)_*$$

$$Ker(\partial_0) = \mathbb{Z}/5[v_3^{\pm 5}],$$

Coker(
$$\partial_0$$
) = $K(3)_*\{h_0, h_1, \zeta_3\} \oplus \mathbb{Z}/5[v_3^{\pm 5}]\{v_3^{-1}h_2\},$

$$\operatorname{Ker}(\partial_1) = K(3)_* \{ h_i : i = 0, 1, 2 \} \oplus \mathbb{Z}/5[v_3^{\pm 5}] \{ \zeta_3 \},$$

$$\operatorname{Coker}(\partial_1) = K(3)_* \{h_0\zeta_3, h_1\zeta_3, b_i, g_i, k_i \colon i \in \mathbb{Z}/3\} \oplus \mathbb{Z}/5[v_3^{\pm 5}] \{v_3^{-1}h_2\zeta_3\},$$

$$\operatorname{Ker}(\partial_2) = K(3)_* \{ h_i \zeta_3 : i = 0, 1, 2 \} \oplus \mathbb{Z}/5[v_3^{\pm 5}] \{ b_i, g_i, k_i : i = 0, 1, 2 \}.$$

We have the isomorphism

$$H^{s}E_{2}(3,0)_{*} = v_{2}\operatorname{Coker}(\partial_{s-1}) \oplus \operatorname{Ker}(\partial_{s}),$$

of $\mathbb{Z}/5$ -vector spaces. Therefore

$$H^0E_2(3,0)_* = E_1(3,1)_* \{v_2v_3^t : t = 1,2,3,4\} \oplus E_2(3,1)_*,$$

$$H^1E_2(3,0)_* = E_1(3,1)_*\{v_3^{t-1}h_2, v_2v_3^t\zeta_3: t = 1,2,3,4\}$$

$$\oplus E_2(3,0)_*\{h_0,h_1\} \oplus E_2(3,1)_*\{v_3^{-1}h_2,\zeta_3\},\$$

$$H^{2}E_{2}(3,0)_{*} = E_{1}(3,1)_{*}\{v_{3}^{t-1}\zeta_{3}, v_{2}v_{3}^{t}b_{i}, v_{2}v_{3}^{t}g_{i}, v_{2}v_{3}^{t}k_{i} : i = 0, 1, 2, t = 1, 2, 3, 4\}$$

$$\oplus E_{2}(3,0)_{*}\{h_{0}\zeta_{3}, h_{1}\zeta_{3}\} \oplus E_{2}(3,1)_{*}\{b_{i}, g_{i}, k_{i}, v_{3}^{-1}\zeta_{3} : i = 0, 1, 2\}.$$

References

- [1] E. S. Devinatz, Small ring spectra, J. Pure Appl. Algebra 81 (1992), 11–16.
- [2] S. Oka, Derivations in ring spectra and higher torsions in Coker J, Mem. Fac. Sci. Kyushu Univ. Ser. A 38 (1984), 23–46.
- [3] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, 2nd edn (AMS Chelsea Publishing, Providence RI.

新居浜工業高等専門学校紀要 第58巻(2022)

2004).

- [4] R. Kato, K. Shimomura, Products of Greek letter elements dug up from the third Morava stabilizer algebra, Algebr. Geom. Topol. **12** (2012), 951—961.
- [5] H. Toda, Algebra of stable homotopy of \mathbb{Z}_p -spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197–251.