Lower lines of the E(3)-based Adams E,-term for M(5, v, v%)

Ryo KATO*

Let E(3) be the third Johnson-Wilson spectrum at the prime five. In this note, we show that the generalized Smith-Toda

spectrum Vo = M(5, vy, v%) is a ring spectrum. Furthermore, we consider E,-terms of the E(3)-based Adams spectra

sequence converging to the homotopy groups of the E(3)-localization of V5.

1. Introduction

For a prime number p, we have the Brown-Peterson homology

theory BP,(—) at p, whose coefficient algebra is

BP, = Zp[v1,02,03,...] with [v;] = 2(pi -1).

k-1
k-1

generalized Smith-Toda spectrum M J is defined by

For an invariant regular ideal Ji = (p®, Uf‘, ...,0,% ) of BP,, the

BP.(MJi) = BP./J.

We know that the spectrum M(p,v],vlz‘) forp >5and k > 1
exists. At p = 5, Ravenel showed that M(5, v, v;) has no ring
spectrum structure. The first main theorem in this note is the

following:
Theorem 1 The spectrum V; = M(5, vy, v%) is a ring spectrum.

For n > 0, we denote

+1].

E(n). = U;lBP*/(U,H.l,U,H.z, ) =Ly [vr,00, 0001, 0,

The nth Johnson-Wilson spectrum E(n) is a spectrum which rep-

resents the homology theory
E(n).(=) = E(n). ®pp. BP.(-).

If k < n, then we may consider that Ji is an invariant regular

ideal of E(n)., and the spectrum M Ji satisfies
E(n)«(MJx) = E(n)« ®pp, BP«(MJi) = E(n):/Jk-

Let L, denote the Bousfield localization functor with respect to
E(n). The E(n)-based Adams spectral sequence for a spectrum
X is of the form

= Ext>!

S,
E2 E(n).(E(n)

)(E(n)*, E(n).(X)) = mr-s(LnX).

Hereafter, we denote by E(n)y*(X) the E,-term of the spectral

sequence.

We put k(n — 1), = Z/p[o,-1] and

(2

fori > 1, m > 0and n > 2. The second main theorem in this

Ei(n,m). = Z/plon-1,00"" 1/ (0} _))

note is the following:

Theorem 3 Assume p = 5. As a k(2).-module, E(3);"(V2) for

s < 2 is the following:

E(3)Y*(Va) = E (3, 1)o{vavy: t = 1,2,3,4} @ E2(3, 1),

E(3),"(V2) = E1(3, 1) {0} ' ho, 0045 t = 1,2,3,4}
®F;(3,0),{ho, h1} ® E2(3,1).{v3 ' ha, (3},

E(3)7*(V2) = E1 (3, 1). {057 &3, 0003y, 0208 g5, 0205k i = 0, 1,2, t = 1,2,3,4}
®F>(3,0).{hol3. 3} ® E2 (3, 1)u{bi g k103 ' 31 i = 0,1,2}.

Here, the generators have the following internal degrees:

1831 =0,
lgil = 56 - 5

|| =85,
|bi] =8 - 51,

|GGhil =85,
and |k;| =885
Acknowledgements. The author thanks to Katsumi Shimomura

and Hiroki Okajima for many useful comments.

2. The ring structure on V, = M(5, vy, v%)
We begin with a little stronger theorem than [1, Th. 1].

Theorem 4 Let X be a ring spectrum with a multiplication
p: X AX — X, and let f: 31X — X with |f| even. Sup-
pose that:

1. The composite

Fileg
_

sVIX A C(f) X AC(f) 5 C(f)

is trivial. Here, C(f) is the cofiber of f and the map m
is the X-module structure on C(f) obtained from the next

condition.
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2. The diagram

1
sFix A x M5 xax
ul lu
sIflx ; X

commutes.

Then, C(f) has a ring structure so that the inclusion map

11 X — C(f) is a map of ring spectra.

Proof. The proof is standard and identical to that of [1, Th. 1].
Let : S — X be the unit map on X. The hypothesis (2) im-
plies the existence of a map m’: X A C(f) — C(f) fitting in the

commutative diagram

10N
SISO A x Y S0 a0 ne(f) ——s SIS0 A

X

X

q/\lxl lq/\lx lq/\lc(f) lmlx
SFIXAX 2 A — XAC(f) — sflHx A
| b I I
sIflx __f__> X — Cfy —— sifiHx,

in which the rows are cofiber sequences. Since m’(n A 1¢(s))
is an automorphism of C(f), we put m = (m’(n A lc(f)))‘lm’.
Then, m(n A lc(f)) = lc(f).

By the hypothesis (1), we have amap p': C(f) AC(f) — C(f)
such that y’(1 A le(p)) = m. Putalson’ = ip: S® — C(f) for the

inclusion t: X — C(f). Then, we have a commutative diagram

* —— S"AC(f) == S"AC())
l l'ﬂ\lcm l”’MC(f)
22|f|X/\C(f) zA—lC(—f)a X AC(f) M C(f)y nC(f)

l

*

|- I+
c(f) ().

Therefore, we obtain the ring structure map on C(f) so that ¢ is

E—

a map of ring spectra. O

From now on, we work at the prime five. We consider the mod
five Moore spectrum M and the first Smith-Toda spectrum V(1)
defined by the cofiber sequences

5

0250 L ML s and s M S M v L s0Mm

for the Adams map «. For X and f in Theorem 4, we set
X=V(1) and f=p:3%V(1) - V().

Here, f is the vy-periodic map due to L. Smith. We notice that
V(1) is a commutative associative ring spectrum (cf. [2, Remark
3.9]), and g satisfies the condition (2) of Theorem 4 by [2, p. 41].
Consider the cofiber sequences

(5) sy Lovay v, L sy ),
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Then, the cofiber C(ﬂz) is Vo = M(S,vl,ag) and we have the
V(1)-module structure m: V(1) A Vo — V5 on V; obtained from
the condition (2) so that

(6)

ié[,l] = m(lv(l) A ié),

where p;: V(1) A V(1) — V(1) denotes the multiplication of
the ring spectrum V' (1). Furthermore, Verdier’s axiom gives rise

to a cofiber sequence

2
(7) 8y L By - ey,
from the cofiber sequences (5) for t € {1,2} so that

®)

Lemma9 [V(1) AV, Valug =2Z/5 {m(lv(l) A Ap)}.

o s
Aiy =i and  piy =i].

Proof. From [5, Th. 3.6], for degree < 187, we obtain
(10)
[V(1).Val. = P(B. ')/ (B*) ® A® E(&) & P(B. ')/ (f*) ® B,

where |f’| = 38, |8y| = —10, A is a Z/5-module generated by six
elements of degrees

0, 7, 39, 54, 86 and 93,

and B is a Z/5-module generated by eight elements of degrees

-9, 6, 30, 38, 45 53, 77 and 92.

In [2, Remark 3.9], it is shown
VI AV() =V(1) V(L AV(D) VvEOV(D)

for the cofiber L; of a; € m7(S°). ([2, Remark 3.9] has a typo:
sp + 2 is actually sq + 2.) By this decomposition together with
(10), we obtain

[VIDAV(1), V2145 =0 and  [V(1)AV(1), Valag = Z/5{i3 B }.
It follows that i} induces the monomorphism

(Ly(yAip)™: [V(DAV, Valug = [V(DAV(L), Valag = Z/5{i}m }.

For the element m(1y 1) A Ap) € [V(1) A V2, V2]48, We compute
by (6) and (8):

(Iyy A ) (m(Lyy AAp)) = m(lyy AAp) (v Ady) = m(lyqry A Api)

m(lyy A i) =m(lyay A iy f)

=iyfu.
Thus, we see that (1y(1y Ai5)" is an isomorphism and the lemma
follows. O
Proof of Theorem 1. 1t suffices to show that X = V(1) and
f = p satisfy the condition (1) in Theorem 4. Consider the ele-
ment m(f A ly,) € [V(1) A Vo, V2]4g. Then, by Lemma 9, there
exists x € Z/5 such that

m(B A lyy) = xm(ly () A Ap).

m(lV(l) A ié)(lV(l) A ﬂ) = iép](lv(l) A ﬁ)



Now we verify the condition (1) by computation

m(B* A ly,) =m(BA1y,) (B A 1y,)
=xm(lyy AAp) (B A 1vy)
=xm(B A 1) (lv() A Ap)
= x’m(lyy A Ap)(Lv iy A Ap)
= x2m(1V(1) A ApAp)
=0,

since pA =0by (7). O

3. E(3);’*(M(5,01,02)) fors <2

Let E(3) be the third Johnson-Wilson spectrum at p = 5. For
an E(3).(E(3))-comodule M, we denote

H*M = Ext5

E(S)*(E(a))(E(3)*,M).

Put K(3). = E(3)./(5,v1,v2) = Z/5[05'], and we have
H'K(3). = E(3)5"(M(5,01,02)).

From [3, Th. 6.3.34], we obtain the structure of HSMg. In par-

ticular,

H°K(3), = K(3)s,
H'K(3), =KQ3)«{hi,(3:i=0,1,2},
H*K(3), = K(3)u{hil3, bi, g, ki i = 0,1,2}.

(Remark that Ravenel used h;; and b;; instead of h; and b;, re-
spectively.) We also note that [4, 2.7 Th.] implies that HK(3),

contains a subspace generated by
h;b; and h;b;, forie Z/3.
By the argument of [4, p.954], in H3S(3),, we have
hibiv1 = hi(his1, hiso, hi, hiv1) = Chi hivr, hiso, hidhis = bihigr.
For E(3). = Z(5)[v1, v, 0311], we consider the subquotient
Ei(3,m). =Z/5[v2,03"" ]/ (0}).
In particular, K(3), = E{(3,0).. Furthermore,
HE>(3,0), = E(3)" (V)

for Vo, = M(5, vy, U%). The short exact sequence

0— K(3): = E»(3,0). —» K(3), > 0
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