アパタイト型イオン伝導体の積層固体電解質を用いた CO2ガスセンサの応答特性

中山 享* 辻 久 巳** 塩見 正樹** 朝日 太郎***

Response characteristics of CO₂ gas sensor using the layer type solid electrolyte of apatite type ion conductor

Susumu NAKAYAMA* Hisami TSUJI** Masaki SHIOMI** Taro ASAHI***

A solid state electrochemical cell, (-)CO₂, O₂, Pt | LiLaSiO₄ / La₁₀Si₆O₂₇ | Au, Li₂CO₃, CO₂, O₂(+), was investigated for the monitor of carbon dioxide in air, using the layer type ionic conductor prepared from Li⁺ ionic conductor and O²⁻ ionic conductor by the thermal treatment as solid electrolytes. At 400 °C, the electromotive force, EMF, of the sensor increased linearly with an increase in the logarithm of CO₂ partial pressure, in accordance with the Nernst's law. On the other hand, the EMF was little affected by the change of O₂ partial pressure. At the detection electrode, the two-electron transfer and the four-electron transfer were found to occur for CO₂ and O₂, respectively. The four-electron transfer reaction associated with O₂ molecules was found to occur at both the detection and counter electrodes, indicating that this sensor has an excellent selectivity for CO₂.

1. 緒 言

ガスセンサは、特定ガスの存在やその濃度を検知し、電位 や電流などの電気信号に変換するデバイスである。大気中の 二酸化炭素、メタン、フロン、一酸化二窒素などの温室効果 気体は年々増加しており、大きな社会問題(地球温暖化)と なっている。特に、化石燃料によって発生する二酸化炭素 CO2 は温室効果の主因となるガスであり、その濃度の検知は重要 である。CO2の検知には、赤外線分析機器が精度および安定 性に優れていることから使用されるが、装置が大型で高価で あるなどの欠点があるため、これに変わる小型で高性能なセ ンサの研究開発が従来から盛んに行われている。固体電池か ら構成された固体電解質 CO2ガスセンサも、その1つである。 このタイプのセンサの場合,対象となる検知ガス自身が信号 発生に直接関与しているため、雰囲気中に数種のガスが存在 している場合でも、目的とする対象ガスを選択的に検知する 能力が高く、共存する他の成分ガスによる妨害、影響を受け にくいのが特徴である。さらに、赤外吸収による分析に較べ、 簡便かつ迅速な検知ができ、保守が容易で、軽量小型である。 また、固体電解質ガスセンサは、電解質中のキャリア種と検 出ガス種が異なる場合にも実現することができる。すなわち、 検知極において検出ガスを含む酸化還元反応(電子を含む反 応)が起こる場を構築すればよい。固体電解質として NASICON や β-アルミナなどの Na⁺イオン導電体および LiTi₂(PO₄)₃ + 0.2Li₃PO₄ などの Li⁺イオン導電体を用いた CO₂ ガスセンサが報告されている[1-14]。また、素子の構造や電極材 料についても検討されており、NASICON を用いたセンサで は、検知極に二元系炭酸塩を使用すると水蒸気の影響を受け ないこと[4]、素子全体を同じ雰囲気にさらすことのできる Na₂Ti₆O₁₃/TiO₂を参照極として用いたもの^[5]、Li⁺イオン導電体 と O²⁻イオン導電体を積み重ねた一端封止型センサ^[6](酸素 濃度の変化に影響されない)、さらに Na+イオン導電体に

令和3年8月25日受付 (Received Aug. 25, 2021)

^{*}新居浜工業高等専門学校生物応用化学科(Department of Applied Chemistry and Biotechnology, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580, Japan)

^{**}新居浜工業高等専門学校エンジニアリングデザイン教育センター (Engineering design education center, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580, Japan

^{***}新居浜工業高等専門学校数理科(Faculty of Fundamental Science, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580, Japan)

Li₂CO₃·BaCO₃を組み合わせた素子^[7]も報告されている。本 研究では、アルカリ金属イオン導電体 LiLaSiO₄ と酸化物イ オン導電体 La₁₀Si₆O₂₇ を積み重ねた積層型固体電解質を用 いた同様な固体電池を構成し、電位検出型 CO₂ ガスセンサと しての作動特性について検討した。

2. 実験

2-1 電解質作製

積層型固体電解質は、以下のように作製した。酸化物イオ ン導電体 La₁₀Si₆O₂₇ セラミックスは、La₁₀Si₆O₂₇の原料粉末を 100MPa でプレスした後、1700°Cで2時間焼結して得た。 その La₁₀Si₆O₂₇ セラミックス上に、アルカリ金属イオン導電体 LiLaSiO4 セラミックスの原料粉末を 100MPa でプレスした LiLaSiO4 の成形体を重ねて置き、1250°Cで2時間溶融した。 La₁₀Si₆O₂₇ および LiLaSiO4 の原料粉末の調製は、先の報告ど おりである^[15,16]。

2-2 センサ素子作製

センサ素子は、Fig.1 に示すような電池で構成される。積層 型固体電解質の各面をそれぞれ Pt および Au ペーストでコー ティングした後、800°Cで焼き付けた。さらに、Pt ワイヤー を接続した。Li2CO3 水溶液を Au 検知電極に塗布して乾燥さ せ、固体電極を作製した。センサ素子は両極 (Au 検知電極と Pt 対極) 共に、同じ CO2 ガス雰囲気に晒される構造になっ ている。

Fig.1 センサ素子図.

2-3 センサ素子起電力の測定

起電力の測定は、400 ℃で行った。電気炉内にセンサ素子 を固定し、合成空気にて希釈した CO₂ 濃度がそれぞれ 10, 100, 1000, 10000 ppm の CO₂ ガスを約 50 mL·min⁻¹の速度 で電極上に流通させた。両電極間の電位差(起電力)は、濃 度調整したガス流下にて、デジタルエレクトメータ(アドバ ンテスト製、TR-8652)を用いて測定した。

3. 結果及び考察

3-1 積層型固体電解質

一般に、熱膨張係数およびアルカリ金属イオン伝導体セラ ミックスと酸化物イオン導電体セラミックスとの反応が異 なるため、熱処理法による異種の積層型イオン伝導体の作製 は非常に困難である。 しかしながら、Fig.2 に示す LiLaSiO4 /La10Si6O27積層型固体電解質の切断面を電子顕微鏡にて観察 した二次電子像から、接合部は非常に緻密で、機械的衝撃と 熱衝撃の両方に対して安定していることが確認された。この ことから、高密度で、強度のあるセンサ素子用の固体電解質 であることがわかる。また、Fig.3 に交流複素インピーダンス 法で求めた LiLaSiO4 / La10Si6O27 積層型固体電解質のアレニ ウスプロットを示すが、400 ℃でバルク抵抗(粒内抵抗+粒 界抵抗) は 18 万Ω・cm であった。

Fig.2 LiLaSiO₄ / La₁₀Si₆O₂₇ 積層型固体電解質の切断面を電 子顕微鏡にて観察した二次電子像.

Fig.3 LiLaSiO₄ / La₁₀Si₆O₂₇ 積層型固体電解質のアレニウス プロット.

3-2 応答特性

Fig.4 に、LiLaSiO4 / La₁₀Si₆O₂₇積層型固体電解質を用いた センサ素子における 400 ℃での起電力の CO₂ 分圧依存性お よび CO₂ 分圧一定(約 0.2 atm)下での起電力の O₂ 分圧依存 性を示す。起電力は CO₂ 分圧変化に対して直線的に変化して おり Nernst 式に従う応答をしていることがわかる。一方、O₂ 分圧変化に対して起電力は、ほとんど依存せずほぽ一定値を 示している。すなわち、センサ素子の起電力は雰囲気中の O₂ 分圧変化に対して応答していないことがわかる。

Fig.4 400 ℃での LiLaSiO₄ / La₁₀Si₆O₂₇ 積層型固体電解質を用 いたセンサ素子の CO₂ 分圧変化 (pCO₂) および O₂ 分圧変化 (pO₂) に対する起電力 (E) 応答.

3-3 応答機構

LiLaSiO₄/La₁₀Si₆O₂₇積層型固体電解質を用いたセンサ素子の応答機構について検討する。 Fig.5 にセンサ素子のモデル 図を示す。センサ素子では2種類の固体電解質が用いられた ため、次のような反応が起こっているものと考えられる。

検知極<式 1> 2Li⁺ + CO₂ + $1/2O_2^{I}$ + 2e⁻ = Li₂CO₃ 界面<式 2> 2Li⁺ + O²⁻ = Li₂O 対極<式 3>

上記の式に Nemst 式を適用すると、検知極電位および対極

電位は、それぞれ次のように表される。

 $1/2O_2^{II} + 2e^- = O^{2-}$

Fig.5 400 ℃での LiLaSiO₄/La₁₀Si₆O₂₇積層型固体電解質を用 いたセンサ素子の応答機構図.

- 検知極 (Au 電極側) <式 4> Es = Es^o - (RT/2F) ln (aLi₂CO₃/(aLi⁺²·pO₂^{11/2}·pCO₂))
- 対極 (Pt 電極側) <式 5> Ec = Ec $^{\circ}$ - (RT/2F) ln (aO²⁻/pO₂II 1/2)

したかって、センサ素子の起電力は次のように表される。

<式 6> E = Es - Ec $= E^{\circ} - (RT/2F) \ln ((aLi_2CO_3 \cdot pO_2^{II1/2})/(aLi_2O \cdot pCO_2 \cdot pO_2^{II1/2}))$

ここで、Li₂CO₃およびLi₂Oの活量は、<式1>および<式3 >の電極反応によっては実質的に変化しないと考えられる。 つまり、これらの活量は雰囲気によらず一定とすると次のよ うになる。

<式 7> $E = E' + \ln ((RT/2F) pCO_2) + \ln ((RT/4F) (pO_2^{II 1/2}))$

また、センサ素子は検知極および対極ともに同じ雰囲気中に おかれているため両極の酸素分圧は等しい。したがって、< 式7>は次のように表される。

<式 8> E = E' + ln ((RT/2F) pCO₂

これは、 pO_2 の項を含んでいないため、起電力が O_2 分圧変化 に依存せず、 CO_2 分子に関して2電子相当の傾きで応答する ことを示している。したがって、LiLaSiO4/La₁₀Si₆O₂₇積層型 固体電解質を用いたセンサ素子は、 O_2 含有量が変化するよう な雰囲気での CO_2 センサとして有効である。

4. 結 言

熱処理により Li⁺イオン伝導体と O^{2-} イオン伝導体から調 製された LiLaSiO₄ / La₁₀Si₆O₂₇ 積層型固体電解質を使用した 電位差測定 CO₂ ガスセンサ素子を作製した。CO₂ 濃度を変化 させた場合、ガスセンサ素子の起電力は 400°Cで Nernst 式に 従い、CO₂ 分子に関連する 2 電子反応が検知極で発生した。 その起電力は O₂ 濃度の変化による影響はほとんど受けなか った。O₂ 分子に関連する 4 電子移動反応は、検知極と対極の 両方で発生するため、両方の電極の電位変化が補償され、CO₂ に対する優れた選択性がもたらされた。

謝辞

本研究の一部は、JSPS 科研費(15K06495、19K05009)お よび JST A-step 探索タイプ(AS262Z01446M)により実施し たものである。厚く御礼申し上げます。

参考文献

- T. Maruyama, S. Sasaki, Y. Saito, Potentiometric gas sensor for carbon dioxide using solid electrolytes, Solid State lonics 23 (1987) 107-112.
- [2] T. Maruyama, X-Y. Ye, Y. Saito, Electromotive force of the CO, CO₂, O₂ concentration cell using Na₂CO₃ as a solid electrolyte at low oxygen partial pressures, Solid State lonics 23 (1987) 113-117.
- [3] N. Imanaka, T, Murata, T. Kawasato, G. Adachi, CO₂ detection with lithium solid electrolyte sensors, Sens. Actuators B 13 (1993) 476-479.
- [4] N. Miura, S. Yao, Y. Shilizu, N. Yamazoe, High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode, Sens. Actuators 9 (1992) 165-170.
- [5] J. Maier, M. Ilolzinger, W. Sitta, Fast potentiometric CO₂ sensors with open reference electrodes, Solid State lonics 74 (1994) 5-9.
- [6] N. Imanaka, T. Murata, G. Adachi, Single Surface Sealed Type Carbon Dioxide Gas Sensor Based on a Lithium Ionic Conductor, Denki Kagaku 61 (1993) 909-910.
- [7] S. Yao, Y. Shimizu, N. Miura, N. Yamazoe, Solid electrolyte carbon dioxide sensor using sodium ionic conductor and lithium carbonate-based auxiliary phase, Appl. Phys. A 57 (1993) 25–29.
- [8] S. Ikeda, T. Kondo, S. Kato, K. Ito, K. Nomura, Y. Fujita, Carbon dioxide sensor using solid electrolytes with zirconium phosphate framework (2) Properties of the CO₂ gas sensor using Mg_{1.15}Zr₄P_{5.7}Si_{0.3}O₂₄ as electrolyte, Solid State Ionics 79 (1995) 354-357.
- [9] P. Pasierb, S. Komornicki, R. Gajerski, S. Kozinski, M. Rekas, The performance and long-time stability of potentiometric

CO₂ gas sensors based on the (Li–Ba)CO₃|NASICON| (Na– Ti–O) electrochemical cells, Solid State Ionics 157 (2003) 357-363.

- [10] P. Pasierb, S. Komornicki, S. Kozinski, R Gajerski, M. Rekas, Long-term stability of potentiometric CO₂ sensors based on Nasicon as a solid electrolyte, Sens. Actuators B 101 (2004) 47-56.
- [11] K. Shqau, H. Nafe, F. Aldinger, F. M. Figueiredo, Determination of the p-electronic conduction parameter of NASICON by potentiometric measurements, Electrochim. Acta 49 (2004) 2691-2696.
- [12] S. Nakayama, S. Kuwata, M. Sato, M. Sakamoto, Y. Sadaoka, CO₂ gas sensor using the potassium ionic conductor K₂O-Sm₂O₃-6SiO₂, J. Ceram. Soc. Japan. 105 (1997) 255-257.
- [13] S. Nakayama, Y. Shiozaki, S. Kuwata, Y. Sugimoto, T. Ichimori, T. Hino, H. Shikama, M. Okazaki, Potentiometric CO₂ gas sensor using the layer type ionic conductor Li₂O·Sm₂O₃·2SiO₂+0.92ZrO₂·0.08Yb₂O₃, J. Ceram. Soc. Japan. 106 (1998) 112-115.
- [14] S. Nakayama, S. kuwata, T. Ichimori, M. Okazaki, M. Okamasa, S. Imai, M. Sakamoto, Y. Sadaoka, Ionic conductivity of MAISi₂O₆ (M = Li, Na, K, Rb and Cs) and its application as a potentiometric CO₂ gas sensor, J. Ceram. Soc. Japan. 106 (1998) 715-718.
- [16] S. Nakayama, Y. Sadaoka, Ionic conductivity of ceramics prepared by sintering of M₂CO₃-Ln₂O₃-2SiO₂ mixtures, (M = Li, Na, K, Rb, Cs, Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er, Yb), J Mater. Chem. 3 (1993) 1251-1257.