逆ミセル抽出におけるメチレンブルーの界面物質移動係数

衣笠 巧* 篠原未結季** 西井靖博***

Interfacial Mass Transfer Coefficients of Methylene Blue in Reversed Micellar Extraction

Takumi KINUGASA* Miyuki SHINOHARA** Yasuhiro NISHII***

The kinetics of the reverse micellar extraction of cationic dye, methylene blue (MB), using sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and di(2-ethylhexyl)phosphoric acid (DEHPA) as the anionic surfactants was examined. The interfacial mass transfer coefficients, $k_{f,i}$, for MB extraction were obtained from the overall mass transfer coefficients of MB and iodine. It was found that the $k_{f,i}$ values are proportional to the AOT and the DEHPA concentration, and the extraction reaction rate constant, k_{ex} , were obtained. It was suggested that the interfacial reaction between MB and the surfactant is a secondary reaction proportional to the MB concentration. The k_{ex} values decreased as the salt concentration increased, and then the electrostatic screening effect by the salt could be quantified. It was suggested that the k_{ex} values increased as the 2-ethyl-1-hexanol concentration of the organic phase increased.

1.緒言

染料、繊維、皮革、紙・パルプ、プラスチック、塗料など の多くの産業では、染料を使用して製品を着色し、大量の水 を消費している。その結果、これらの工場からは合成染料を 含む多量の着色排水が発生している。染料の製造・加工プロ セスにおいては、染料の約12%が失われ、そのうち約20%が 産業排水に流入しており、染色プロセスにおいては、繊維な どへの染料の固定度が低いため、染料の約50%が排水中へ流 出しているとされていて、世界的な水質汚染源と見なされて いる[1]。染料には耐候性、耐光性、耐薬品性などの性質が要 求されるため難分解性のものが多い。また、ごく微量でも河 川・湖沼・沿岸海域を着色して強い汚濁感を生じさせるとと もに、太陽光の透過を低下させることで水生生物に影響を与 える。このような理由から、排水からの染料除去は重要な課 題である[2-4]。特に中国やインドをはじめとするアジア諸国で は、環境意識の高まりとともに着色排水汚染の問題が多く報 告されるようになってきていて、その処理法の確立は喫緊の 課題とされている[5,6]。

一般に着色排水は、無機・高分子凝集剤による凝集処理および活性汚泥法による生物処理の後、UV オゾン酸化や活性

炭吸着によって染料除去がなされている^[7]。これらの方法に は、凝集物、汚泥、活性炭などの処理費、オゾン発生装置の 設備費や運転費などコスト面の問題がある。さらに、いずれ の方法でも排水から除去された染料は分解されたり廃棄され たりするため、再利用することはできない。最近、溶媒抽出 法による排水からの染料の除去が報告されつつある。溶媒抽 出法は化学工業プロセスにおいて最もポピュラーな分離技術 の一つであり、低いエネルギー消費、簡易で安価な装置、連 続操作・スケールアップの容易さ、抽出剤添加による高性能 化などの利点をもつ。溶媒抽出法では着色排水中の染料を抽 出剤を含む有機溶液に溶解させることで除去する。さらに、 逆抽出によって染料を有機溶液から水溶液へと回収できるた め、染料の再利用が可能である。

本研究室では抽出媒体として逆ミセルを用いた染料除去・ 回収を検討している^[8-10]。逆ミセルは無極性の有機溶媒中に おいて両親媒性界面活性剤が自己組織化した会合コロイドで ある。親水基が集合体の内部に向き、疎水基が無極性溶媒の 方に伸びている。集合体の中心に水を可溶化することによっ てナノサイズの微小水滴が形成され、水溶性の物質が微小水 滴に取り込まれる。逆ミセル抽出では、逆ミセルを形成する 界面活性剤が抽出剤としてはたらく。これまでに、ビス(2-エ

令和 3 年 9 月 30 日受付 (Received Sep. 30, 2021)

^{*} 新居浜工業高等専門学校生物応用化学科(Department of Applied Chemistry and Biotechnology, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580 Japan)

^{**} 新居浜工業高等専門学校専攻科生物応用化学専攻(Advanced Engineering Course Applied Chemistry and Biotechnology Program, National Institute of Technology, Niihama College, Niihama, 792-8580 Japan)

^{***} 国立高等専門学校機構 (National Institute of Technology, Hachioji, 193-0834 Japan)

チルヘキシル)スルホコハク酸ナトリウム (AOT) およびジ(2-エチルヘキシル)リン酸 (DEHPA) からなる逆ミセルによる メチレンブルー (MB) の抽出平衡について、塩濃度や pH の 影響を検討し、逆抽出が可能なことも見出した^[8,9]。また、 MB の抽出速度についても検討し、総括物質移動係数に及ぼ す操作条件の影響を検討した^[10]。しかし、総括物質移動係数 は境膜拡散と界面反応の両方を含んだ物理量であり、前報で は定性的な考察しかできなかった。そこで本稿では、MB の 界面物質移動係数を求めて MB と界面活性剤との反応につい て議論することを目的とする。

2. 実験

カチオン性染料として MB、アニオン性界面活性剤として AOT または DEHPA を用いた。DEHPA は抽出剤 DP-8R を 6 kmol/m³ 塩酸と蒸留水で交互に 3 回洗浄し、遠心分離して精 製したものを用いた。水相は、バッファで pH、NaCl または KCl で塩濃度を調節した MB 水溶液を用いた。MB の濃度は 2.0×10⁻⁵ kmol/m³とした。有機相は、界面活性剤を種々の濃 度で有機溶媒に溶解して調製した。有機溶媒はイソオクタン と 2-エチル-1-ヘキサノール (EHA) を単独で、または混合し て用いた。

MBの抽出速度実験は、Fig.1 に示すガラス製平界面接触撹 拌槽を用いて行った。水相と有機相をそれぞれ 50 cm³ずつ撹 拌槽の下部と上部に入れ、各相の中心位置においた 6 枚平羽 根タービン翼で撹拌した。撹拌速度は 150 rpm とした。撹拌 開始後、10 分毎に注射器で所定量の水相を採取して紫外可視 分光光度計(島津 UV-1600)で分析し、664 nm の吸光度から

Fig.1 Diagram of stirred cell for dye extraction.

水相の **MB** 濃度 *Cw*を決定した。**MB** の抽出速度 *r_f*は次式で表 される。

$$r_f = -\frac{V_W}{A} \cdot \frac{\mathrm{d}C_W}{\mathrm{d}t} = K_W (C_W - C_O/m) \tag{1}$$

ここでAは油水界面積、 V_W は水相体積、tは時間、 K_W は総括物質移動係数である。mは MBの分配比であり、次式で定義される。

m = *Co/Cw* (at equilibrium) (2)
 MB の分配比 *m* は正抽出条件では大きく、実験の初期では油 相 MB 濃度 *Co*は小さいので、*Co/m* の項は無視できる。この 条件で式(1)を積分すると式(3)を得る。

$$\ln(\frac{C_W}{C_{W,0}}) = -\frac{A}{V_W} K_W t \tag{3}$$

式(2)の左辺を時間 t に対してプロットし、その傾きから MB の総括物質移動係数 Kwを決定した。

また、同様にしてヨウ素の抽出速度実験を行った。水相と して 2.5×10⁻⁵ kmol/m³ ヨウ素水溶液、油相としてイソオクタ ンを用い、水相のヨウ素濃度の経時変化を紫外可視分光光度 計によって 460 nm の吸光度から求めた。ヨウ素の場合も分配 比 *m* は非常に大きく式(1)の *Co/m* の項は無視できるので、式 (3)の *Cw* をヨウ素の濃度とすることでヨウ素の総括物質移動 係数 *Kw*,*u* を決定した。

3. 結果と考察

3-1 AOT 系の界面物質移動係数

Fig.2 は、NaCl または KCl 水溶液から AOT/イソオクタン 逆ミセル溶液への MB 抽出の総括物質移動係数 K_W に及ぼす AOT 濃度の影響を示す。AOT 濃度が高くなると K_W 値は増加 し、やがて一定値に近づくような傾向を示した。また NaCl のときの K_W 値の方が KCl のときよりも大きく、どちらも塩 濃度が高くなると K_W 値は減少した。このような AOT による MB の抽出挙動に及ぼす塩の影響は抽出平衡においても報告 されており、AOT による MB の抽出の推進力は静電的相互作 用であり、塩濃度が高くなると塩による静電遮蔽効果が大き くなって静電的相互作用が弱められるために抽出が起こりに くくなると説明されている^[11]。

AOT 濃度が高くなるにつれて Kwの値が一定値に近づいて いるのは、水相境膜拡散が律速段階になるためと推測される。 AOT 濃度が低い条件では、油水界面において MB と結合でき る AOT が少ないため、界面での抽出反応が律速段階となる。 一方、AOT 濃度が高くなると AOT が十分に存在するため抽 出反応速度が大きくなり、水相境膜において MB が界面に拡 散する段階が律速になると考えられる。これを確認するため に、MB の水相境膜物質移動係数 kw を Kinugasa et al.の方法^[11] で推定した。境界層理論によれば、シャーウッド数 Sh (= kwL/D) はシュミット数 Sc (= μ/ρ D) の 1/3 乗に比例すること が知られている^[12]。すなわち、

 $kwL/D \propto (\mu/\rho D)^{1/3}$ (4) ここで D は拡散係数、 ρ は密度、 μ は粘度である。L は代表長

Fig.2 Effect of AOT and salt concentration on overall mass transfer coefficient of MB from (a) NaCl and (b) KCl solution to AOT/isooctane.

さであり、本研究の場合は撹拌翼の直径である。式(4)より kw は D の 2/3 乗に比例することがわかる。したがって、MB と ヨウ素の kw と D の間に次の関係が成り立つ。

$$k_{W}/k_{W,I2} = (D_{MB}/D_{I2})^{2/3}$$
(5)

MBとヨウ素の拡散係数 *D_{MB}、D_{I2}*は次の Wilke-Chang の式^[13] を用いて算出した。

$$D = 7.4 \times 10^{-12} \frac{(\phi M)^{1/2} T}{\mu V_m^{0.6}}$$
(6)

ここで ϕ は溶媒の会合係数(水の場合は 2.6)、M は溶媒の分 子量、T は絶対温度、 μ は溶媒の粘度、 V_m は MB またはヨウ 素の沸点分子容である。式(5)より、 $D_{MB} = 4.4 \times 10^{-10}$ m²/s、 D_{I2} = 1.3×10^{-9} m²/s と求められた。本実験では、ヨウ素の総括物 質移動係数の測定値は 3.9×10^{-5} m/s であった。ヨウ素の抽出 のように、油相への分配係数の大きな物質の物理溶解の場合、 総括物質移動係数は水相境膜物質移動係数に等しいことが知 られている。したがって、式(5)より MB の水相境膜物質移動 係数 $k_W = 1.9 \times 10^5$ m/s が得られた。図中の破線はこの値を示 しており、塩濃度が高くなると K_W 値は k_W 値に近づいていく ことから、このときの MB の抽出が水相境膜拡散によって支 配されていることが示唆される。

MB の抽出に二重境膜説があてはまるとすると、逆ミセル による溶質の抽出は、水相境膜内の拡散、界面における抽出 反応、油相境膜内の拡散の三段階で生じると考えることがで きる。したがって、式(1)は次のように表せる。

$$r_{f} = K_{W}(C_{W} - C_{O}/m) = k_{W}(C_{W} - C_{W,i})$$

= $k_{i,f}(C_{W,i} - C_{O,i}/m) = k_{O}(C_{O,i} - C_{O})$ (7)

ここで ko は油相境膜物質移動係数、k_i,は正抽出の界面物質移動係数、C_{W,i}、Co,i はそれぞれ水相側および油相側の界面 MB 濃度である。これより、式(8)が導かれる。

$$\frac{1}{K_W} = \frac{1}{k_W} + \frac{1}{k_{i,f}} + \frac{1}{mk_O}$$
(8)

この式は全物質移動抵抗が各段階の物質移動抵抗の和に等しいことを表している。正抽出のときは一般に m≫1 なので、式(8)の右辺第3項1/mkoは無視小となる。そのため、総括物質移動係数の測定値 Kwと水相境膜物質移動係数の計算値 kw から界面物質移動係数 kifを算出することができる。

その結果を Fig.3 に示す。どちらの塩の場合も、傾き1の 直線となり、界面物質移動係数 k_{if}は AOT 濃度に比例するこ とがわかった。したがって、次の式が成り立つ。

$$k_{i,f} = k_{ex} C_{\text{AOT}} \tag{9}$$

式(7)より、*m*≫1 のとき *Co*,i/*m* は無視小となることから、

rf = k_i, C_{W,i} = k_{ex}C_{AOT}C_{W,i} (10)
 これは MB と AOT の界面反応が MB 濃度と AOT 濃度に比例
 する 2 次反応であり、k_{ex}は油水界面での抽出反応速度定数に
 相当することを示している。

Fig.3 の結果に式(9)をあてはめて kex を求め、これを塩濃度 に対してプロットしたのが Fig.4 である。kex 値は塩濃度が高 くなるほど減少しており、NaCl の方が KCl よりもその傾きが 急であることがわかる。これは前述した塩による静電遮蔽効 果を意味しており、定量的に表すことができた。

3-2 DEHPA 系の界面物質移動係数

KCI 水溶液から DEHPA/EHA 逆ミセル溶液への MB 抽出 実験を行い、DEHPA 濃度の影響を調べた。AOT 系では有機 溶媒としてイソオクタンを用いたが、ここでは EHA を用い た。DEHPA/イソオクタン溶液を水溶液と接触させると、 DEHPA が水相に溶出することが知られており、これを防ぐ ためには EHA を添加する必要がある^[9]。そのため、DEHPA 系ではイソオクタンと EHA の混合溶媒を用いることが多い。 しかし、まずは単純な系で検討すべきであると考え、EHA の みを有機溶媒とする条件で実験を行った。データは示してい ないが、DEHPA 柔の総括物質移動係数 Kw も AOT 系と同様 に、DEHPA 濃度が高くなると増加し、やがて一定値になる 傾向を示した。Fig.5 は、式(8)から求めた界面物質移動係数 k_ufに及ぼす DEHPA 濃度の影響を示す。AOT のときと同様に、

Fig.3 Effect of AOT and salt concentration on interfacial mass transfer coefficient of MB from (a) NaCl and (b) KCl solution to AOT/isooctane.

*k*_i/値は DEHPA 濃度に比例することがわかった。したがって、 DEHPA 系でも式(9)が成り立つと考えられる。

Fig.5 の結果に式(9)をあてはめて kexを求め、Fig.4 にプロットした。kex 値は塩濃度とともに減少し、その傾きは AOT 系の KCl のときとほぼ同じであった。界面活性剤と有機溶媒が変わっても KCl による静電遮蔽効果の影響は同じであった。ただし、kex 値そのものは DEHPA 系の方が 10 倍程度大きかった。これが界面活性剤と有機溶媒のどちらのせいかは明確ではない。

3-3 界面物質移動係数に及ぼす有機溶媒の効果

界面物質移動係数に及ぼす有機溶媒の効果を検証するため に、AOT 逆ミセル溶液および DEHPA 逆ミセル溶液への MB 抽出の界面物質移動係数 k_ifに及ぼす油相の EHA 濃度の影響 を示す。Fig.6 に AOT 逆ミセル溶液および DEHPA 逆ミセル

Fig.4 Effect of salt concentration on extraction rate constant of MB at oil-water interface.

Fig.5 Effect of DEHPA and KCl concentration on interfacial mass transfer coefficient of MB from KCl solution to DEHPA/EHA.

溶液への MB 抽出の界面物質移動係数 k_{if} に及ぼす油相の EHA 濃度の影響を示す。どちらの界面活性剤でも EHA 濃度 が高くなるほど k_{if}値は大きくなった。

Fig.6 の結果に式(9)をあてはめて kexを求め、Fig.7 に EHA 濃度に対してプロットした。kex 値は EHA 濃度とともに増加 し、CEHA が 0 %から 100 %になるまでに 10 倍程度増加した。 また、EHA 濃度が低いときは AOT 系の kex 値の方が DEHPA 系よりも 1.5 倍程度大きかったが、EHA 濃度が高くなるとほ とんど同じになった。以上より、kex 値の増加は界面活性剤の 影響も無視できないが、有機溶媒の効果の方が大きく、AOT と DEHPA とでは MB の抽出速度にほとんど違いはないが、 有機溶媒を構成するイソオクタンと EHA の割合によって著 しく変化することがわかった。抽出速度に及ぼす有機溶媒の 影響は複雑であり、よくわかっていないが、抽出平衡に関し

Fig.6 Effect of EHA concentration on interfacial mass transfer coefficient of MB from KCl solution to (a) AOT/(isooctane-EHA) and (b) DEHPA/(isooctane+EHA).

てはいくつかの報告がある。Komasawa et al.は、DEHPA などの抽出剤を用いて金属イオンの抽出平衡に及ぼす有機溶媒の効果を調べた^[14]。DEHPA はヘプタンなどの無極性溶媒中で自己会合しやすく有機溶媒との相互作用が小さいため、有機溶媒が DEHPA の挙動に与える影響は比較的小さいことを明らかにした上で、EHA やイソデシルアルコールなどの高級アルコールは抽出剤に結合した金属イオンに配位すると報告している。MB は、その分子構造からして EHA を配位するとは考えにくい。しかし、無極性溶媒であるイソオクタンに対して EHA の割合が大きくなると、EHA が界面活性剤とともにMB の抽出に寄与し、抽出速度を大きくした可能性は検討の余地がある。

AOT 逆ミセルと DEHPA 逆ミセルはそのサイズや形状に大きな違いがあることが知られている^[15]。しかし、*k*_{ex}値に及ぼす界面活性剤の種類による影響が小さいことから、逆ミセル

Fig.7 Effect of EHA concentration on extraction rate constant of MB at oil-water interface.

としての特徴はMBの抽出速度にあまり影響しないと考えら える。したがって、MBの抽出速度は逆ミセルの形成とは関 係なく、MBと界面活性剤との静電的相互作用に支配されて いることが示唆された。

4.結論

AOT および DEHPA を用いた MB の逆ミセル抽出速度について検討した。ヨウ素の総括物質移動係数より、MB の水相 境膜物質移動係数を推定し、MB 抽出の界面物質移動係数 k_{if} を算出した。MB の界面物質移動係数 k_{if}が AOT 濃度および DEHPA 濃度に比例することを見出し、抽出反応速度定数 k_{ex} を求めることができた。これより、MB と界面活性剤の界面 反応が MB 濃度と界面活性剤濃度に比例する 2 次反応である ことが示唆された。抽出反応速度定数 k_{ex}は、塩濃度が高くな ると減少し、塩による静電遮蔽効果を定量化することができ た。また、抽出反応速度定数 k_{ex}は、界面活性剤の種類という よりは有機溶媒の影響を強く受け、油相の EHA 濃度が高く なると増加した。

引用文献

- K. Adesina, A. Olugbenga, S. Bello: "Dye sequestration using agricultural wastes as adsorbents", Water Resources and Industry, Vol.12, pp.8-24 (2015)
- [2] V. Kathersan, J. Kansedo, S.Y. Lau: "Efficiency of various recent wastewater dye removal methods: A review", Environ. Chem. Eng., Vol.6, pp.4676-4697 (2018)
- [3] Y. Zhou, J. Lu, Y. Zhou, Y. Liu: "Recent advances for dyes removal using novel adsorbants: A review", Environ. Pollution, Vol.252, pp.352-365 (2019)
- [4] K. G. Pavithra, P. S. Kumar, V. Jailumar, P. S. Rajan: "Removal colorants from wastwater: A review on sources and treatment strategies", J. Ind. Eng. Chem., Vol.75, pp.1-19 (2019)

- [5] Y. Hu, H. Cheng: "Water pollution during China's industrial transition", Environ. Dev., Vol.8, pp.57-73 (2013)
- [6] D. Chakraborty, K. Mukhopadhyay: "Water Pollution and Abatement Policy in India: a Study from an Economic Perspective", Springer, New York, pp. 135-136 (2014)
- [7] 和田洋六:「用水・排水の産業別処理技術」,東京電機 大学出版会, pp.258-261 (2011)
- [8] T. Kinugasa, H. Kashima, S. Kumeno, S. Tanaka, Y. Nishii: "Forward and backward extraction of methylene blue by using AOT/isooctane reversed micellar solution", Separ. Sci. Technol., Vol.47, pp.1957-1962 (2012)
- [9] T. Kinugasa, T. Hashimoto, Y. Nishii: "Reversed micellar extraction of methylene blue by using di(2-ethylhexyl) phosphoric acid", Solv. Extr. Res. Dev., Jpn., Vol.22, pp.169-176 (2015)
- [10] T. Kinugasa, T. Ichiryu, M. Shinohara, Y. Nishii: "Extraction kinetics of methylene blue by AOT and DEHPA reversed micellar solution", Solv. Extr. Res. Dev., Jpn., Vol.27, pp.49-56 (2020)
- [11] T. Kinugasa, S. Tanahashi, H. Takeuchi: "Extraction of lysozyme using reversed micellar solution : Distribution equilibrium and extraction rates", Ind. Eng. Chem. Res., Vol.30, pp.2470-2476 (1991)
- [12] 伊東章:「境界層理論とシャーウッド数」,化学工学, 第79巻, pp.863-865 (2015)
- [13] C.R. Wilke, P. Chang: "Correlation of diffusion coefficients in dilute solution", AIChE J., Vol.1, pp.264-270 (1955)
- [14] I. Komasawa, T. Otake, Y. Ogawa: "The effect of diluent in the liquid-liquid extraction of cobalt and nickel using acidic organophosphorus compounds", J. Chem. Eng. Jpn., Vol.17, pp. 410-417 (1984)
- [15] T. Kinugasa, A. Kondo, S. Nishimura, Y. Miyauchi, Y. Nishii, K. Watanabe, H. Takeuchi: "Estimation for size of reverse micelles formed by AOT and SDEHP based on viscosity measurement", Colloids Surf. A: Physicochem. Eng. Asp., Vol. 204, pp.193-199 (2002)