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In [2], M. Hill calculated the homotopy groups of the connected higher real 𝐾-theory 𝑒𝑜4 at the prime 5. In this note,
we consider the spectral sequence converging to the 𝑝-local homotopy groups of the spectrum 𝑒𝑜𝑝−1 at 𝑝 ≥ 5.

1. Introduction
Let 𝑝 be a prime number and 𝐾 (𝑛) the 𝑛-th Morava 𝐾-theory

at 𝑝. Hopkins and Miller showed that any closed subgroup of the
𝑛-th Morava stabilizer groupG𝑛 acts on the𝑛-th Morava 𝐸-theory
spectrum 𝐸𝑛 . They also showed that the homotopy fixed point
spectrum 𝐸ℎG𝑛𝑛 is isomorphic to the 𝐾 (𝑛)-localized sphere spec-
trum 𝑆0

𝐾 (𝑛) . For any 𝑝 and 𝑛, the group G𝑛 has a finite maximal
subgroup 𝐺𝑛 . Gourvanov and Hopkins defined the higher real
𝐾-theory

𝐸𝑂𝑛 = 𝐸ℎ𝐺𝑛
𝑛 .

The inclusion 𝑖 : 𝐺𝑛 → G𝑛 induces

(1) 𝑆0 → 𝑆0
𝐾 (𝑛) = 𝐸

ℎG𝑛
𝑛

𝑖∗−→ 𝐸ℎ𝐺𝑛
𝑛 = 𝐸𝑂𝑛 .

Under the composite, we expect that 𝜋∗ (𝐸𝑂𝑛) has much infor-
mation of 𝜋∗ (𝑆0).

For example, at (𝑝, 𝑛) = (2, 1), the algebra G1 is Z×2 , the units
of 2-adic integers, and 𝐺1 = {±1} = 𝐶2, the cyclic group of
order 2. In this case, the spectrum 𝐸𝑂1 is 𝐸ℎ𝐶2

1 = 𝐾𝑂2, the 2-
completed real𝐾-theory. Therefore, the map (1) at (𝑝, 𝑛) = (2, 1)
is 𝑆0 → 𝐾𝑂2.

Hereafter, we consider the case that 𝑝 − 1 divides 𝑛. At
(𝑝, 𝑛) = (2, 1), the higher real 𝐾-theory 𝐸𝑂1 is 𝐾𝑂2. When
(𝑝, 𝑛) = (3, 2), the spectrum 𝐸𝑂2 is isomorphic to the 𝐾 (2)-
localization of 𝑇𝑀𝐹 . These two higher real 𝐾-theories have
connective models 𝑘𝑜 and 𝑡𝑚𝑓 , that is, the 𝐾 (1)-localization of
𝑘𝑜 is 𝐾𝑂2, and the 𝐾 (2)-localization of 𝑡𝑚𝑓 is 𝑇𝑀𝐹𝐾 (2) . The
homotopy groups 𝜋∗ (𝑘𝑜) are well known, and 𝜋∗ (𝑡𝑚𝑓 ) was de-
termined by Bauer [1]. In [2], Hill calculated the homotopy
groups of the connective model 𝑒𝑜4 at 𝑝 = 5 (see Theorem 8).
Our hope is to generalize this result for the homotopy groups of
𝑒𝑜𝑝−1 at 𝑝 ≥ 5.

2. Spectral sequence converging to
𝜋∗(𝑒𝑜𝑝−1)

For the fixed prime number 𝑝, we denote 𝑞 = 2(𝑝 − 1). We
consider the curve of the form

𝑦𝑝−1 = 𝑥𝑝 + 𝑎1𝑥
𝑝−1 + · · · + 𝑎𝑝−1𝑥 + 𝑎𝑝 .

After the coordinate transformation 𝑥 ↦→ 𝑥 + 𝑟 , we obtain

(2) 𝑦𝑝−1 = 𝑥𝑝 + 𝜂𝑅 (𝑎1)𝑥𝑝−1 + · · · + 𝜂𝑅 (𝑎𝑝−1)𝑥 + 𝜂𝑅 (𝑎𝑝 ).

This gives rise to the following Hopf algebroid:

(3) (𝐴, Γ) =
(
Z(𝑝) [𝑎1, . . . , 𝑎𝑝 ], 𝐴[𝑟 ]

)
with |𝑎𝑖 | = 𝑖𝑞 and |𝑟 | = 𝑞. The left unit 𝜂𝐿 : 𝐴 → Γ and the
coproduct Δ : Γ → Γ ⊗𝐴 Γ are given by

𝜂𝐿 (𝑎𝑖 ) = 𝑎𝑖 and Δ(𝑟 ) = 𝑟 ⊗ 1 + 1 ⊗ 𝑟,

and the right unit 𝜂𝑅 : 𝐴 → Γ is defined by (2). This Hopf
algebroid is called a generalized Weierstrass Hopf algebroid.

Example 4 At 𝑝 = 3, we have

𝑦2 = 𝑥3 + 𝑎1𝑥
2 + 𝑎2𝑥 + 𝑎3

𝑥 ↦→𝑥+𝑟−−−−−→ 𝑦2 = (𝑥 + 𝑟 )3 + 𝑎1 (𝑥 + 𝑟 )2 + 𝑎2 (𝑥 + 𝑟 ) + 𝑎3
= 𝑥3 + (𝑎1 + 3𝑟 )𝑥2 + (𝑎2 + 2𝑎1𝑟 + 3𝑟 2)𝑥

+(𝑎3 + 𝑎2𝑟 + 𝑎1𝑟
2 + 𝑟3),

which implies that

𝜂𝑅 (𝑎1) = 𝑎1 + 3𝑟,
𝜂𝑅 (𝑎2) = 𝑎2 + 2𝑎1𝑟 + 3𝑟2,

𝜂𝑅 (𝑎3) = 𝑎3 + 𝑎2𝑟 + 𝑎1𝑟
2 + 𝑟3.

Theorem 5（Gorvanov-Hopkins-Mahowald） For the spectrum
𝑒𝑜𝑝−1 at 𝑝 ∈ {2, 3}, the Adams-Novikov spectral sequence con-
verging to 𝜋∗ (𝑒𝑜𝑝−1) is of the form

𝐸𝑠,𝑡2 (𝑒𝑜𝑝−1) = Ext𝑠,𝑡(𝐴,Γ) (Γ, Γ) ⇒ 𝜋𝑡−𝑠 (𝑒𝑜𝑝−1).

Received Dec. 23, 2020
∗ Faculty of Fundamental Science, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580, Japan

加藤 諒

34



Remark 6 In [2], Hill assumed that the connected model 𝑒𝑜4

has the Adams-Novikov spectral sequence as above. Hereafter,
we assume that the spectrum 𝑒𝑜𝑝−1 at arbitrary 𝑝 satisfies the
condition.

Remark 7 Even if the spectrum 𝑒𝑜𝑝−1 does not satisfy the con-
dition, there exists an isomorphism

𝐸∗,∗2 (𝐸𝑂𝑝−1) = Ext∗,∗(𝐴,Γ) (Γ, Γ) [Δ
−1]∧𝐼

for some element Δ and ideal 𝐼 .

3. Main result
First, we recall the following:

Theorem 8（Hill [2]） At 𝑝 = 5, we have an isomorphism

𝐸0,∗
2 (𝑒𝑜4) = Z(5) [𝑐2, 𝑐3,Δ𝑖 ,Δ

′
15,Δ

′
18 : 4 ≤ 𝑖 ≤ 22]/(rels)

where the degree of 𝑐𝑖 , Δ𝑖 and Δ′
𝑖 is 8𝑖. Furthermore,

𝐸∗,∗2 (𝑒𝑜4) = 𝐸0
2 (𝑒𝑜4) [𝑎,𝑏]/(rels)

where |𝑎 | = (1, 8) and |𝑏 | = (2, 40). The non-zero differentials
are generated by

𝑑9 (Δ20) = 𝑐𝑎𝑏4 and 𝑑33 (𝑎Δ4
20) = 𝑐 ′𝑏17,

where 𝑐 and 𝑐 ′ are in Z×(5) .

Hill’s idea is the following: From (3), we obtain the Hopf
algebroid(
�̄�, Γ̄

)
=
(
Z(𝑝) [𝑎1, . . . , 𝑎𝑝−1], �̄�[𝑟 ]/(𝑟𝑝 + 𝑎1𝑟

𝑝−1 + · · · + 𝑎𝑝−1𝑟 )
)

satisfying that

Ext∗,∗(�̄�,Γ̄) (�̄�, �̄�) = Ext∗,∗(𝐴,Γ) (𝐴,𝐴).

The ideals 𝐼𝑘 = (𝑝, 𝑎1, . . . , 𝑎𝑘 ) of �̄� are invariant and fit into

𝐼0 ⊂ 𝐼1 ⊂ · · · ⊂ 𝐼𝑝−1 = �̄�.

Put
𝐻 ∗,∗

(𝑘) = Ext∗,∗(�̄�/𝐼𝑘 ,Γ̄/𝐼𝑘 ) (�̄�/𝐼𝑘 , �̄�/𝐼𝑘 ),

and we have the (𝑎𝑘 -)Bockstein spectral sequence

𝐻 ∗,∗
(𝑘) ⊗ Z(𝑝) [𝑎𝑘 ] ⇒ 𝐻 ∗,∗

(𝑘−1) .

Therefore, the structure of 𝐸∗,∗2 (𝑒𝑜4) is calculated as follow:

𝐻 ∗,∗
(4) ⇒ 𝐻 ∗,∗

(3) ⇒ 𝐻 ∗,∗
(2) ⇒ 𝐻 ∗,∗

(1) ⇒ 𝐻 ∗,∗
(0) ⇒ 𝐸∗,∗2 (𝑒𝑜4).

Theorem 9（Hill [2]） Let 𝐸 (−) and 𝑃 (−) be exterior and poly-
nomial algebras, respectively. For 𝑝 ≥ 5,

1. 𝐻 ∗,∗
(𝑝−1) = 𝐸 (𝑎) ⊗ 𝑃 (𝑏), where 𝑎 is the cohomology class

{𝑟 } and 𝑏 is the 𝑝-fold Massay product 〈𝑎, . . . , 𝑎〉,

2. 𝐻 ∗,∗
(𝑝−2) = 𝐸 (𝑎) ⊗ 𝑃 (𝑎𝑝−1, 𝑏), and

3. 𝐻 ∗,∗
(𝑝−3) = 𝐸 (𝑎) ⊗𝑃 (𝑎𝑝−1,Δ, 𝑏){𝑥1, . . . , 𝑥𝑝−2}/(rels), where

Δ = 𝑎𝑝𝑝−1 and 𝑥𝑖 = 〈𝑖!2𝑖𝑎𝑖𝑝−2, 𝑎, . . . , 𝑎︸  ︷︷  ︸
𝑖+1

〉.

Theorem 10（Hill [2]） At 𝑝 = 5, the non-zero differentials of
the 𝑎2-Bockstein spectral sequence

𝐻 ∗,∗
(2)⊗Z(5) [𝑎2] = 𝐸 (𝑎)⊗𝑃 (𝑎2, 𝑎3,Δ, 𝑏){𝑥1, 𝑥2, 𝑥3}/(rels) ⇒ 𝐻 ∗,∗

(1)

are generated by

𝑑1 (𝑎3) = 3𝑎2𝑎, 𝑑1 (𝑥3) = 2𝑎2𝑎
2
3𝑏,

𝑑2 (𝑎3
3) = −𝑎2

2𝑥1 and 𝑑2 (𝑥2) = −𝑎2
2𝑏.

Furthermore,

𝐻 ∗,∗
(1) = 𝐸 (𝑎) ⊗ 𝑃 (𝑎2, 𝑎

2
3, 𝑎

5
3,Δ, 𝑏){𝑥1}/(rels) .

Theorem 11 Assume that 𝑝 ≥ 5. For the non-zero differentials
of the 𝑎𝑝−3-Bockstein spectral sequence

𝐻 ∗,∗
(𝑝−3) ⊗ Z(5) [𝑎𝑝−3]
= 𝐸 (𝑎) ⊗ 𝑃 (𝑎𝑝−3, 𝑎𝑝−2,Δ, 𝑏){𝑥1, . . . , 𝑥𝑝−2}/(rels) ⇒ 𝐻 ∗,∗

(𝑝−4) ,

we have

𝑑1 (𝑎𝑝−2) = 3𝑎𝑝−3𝑎, 𝑑1 (𝑥𝑝−2) = −(𝑝 − 2)!2𝑝−2𝑎𝑝−3𝑎
𝑝−3
𝑝−2𝑏,

and 𝑑2 (𝑎3
𝑝−2) = −27

2
𝑎2
𝑝−3𝑥1.

4. Conjectures
In this section, we use the notation

𝑎 � 𝑏

if 𝑎 = 𝑐𝑏 for some 𝑐 ∈ Z×(𝑝) . By Theorem 10, we have

(12) 𝑑2 (𝑥2) � 𝑎2
2𝑏

at 𝑝 = 5. We remark that Theorem 11 doesn’t contain a general-
ization of this differential.

Conjecture 13 For the Bockstein spectral sequence in Theorem
11, the differential (12) is generalized to

𝑑 𝑝−1
2
(𝑥 𝑝−1

2
) � 𝑎

𝑝−1
2
𝑝−3𝑏.

Furthermore,

𝐻 ∗,∗
(𝑝−4) = 𝐸 (𝑎)⊗𝑃 (𝑎𝑝−3, 𝑎

2
𝑝−2, 𝑎

5
𝑝−2,Δ, 𝑏){𝑥1, . . . , 𝑥 𝑝−3

2
, 𝑥 𝑝+1

2
, . . . , 𝑥𝑝−3}/(rels) .

We notice that the first Smith-Toda spectrum 𝑉 (1) exists at
𝑝 = 5. Therefore, by Theorem 10, we have the Adams-Novikov
spectral sequence

𝐸∗,∗2 = 𝐸 (𝑎) ⊗ 𝑃 (𝑎2, 𝑎
2
3, 𝑎

5
3,Δ, 𝑏){𝑥1}/(rels) ⇒ 𝜋∗ (𝑒𝑜4 ∧𝑉 (1)) .

Theorem 14（Hill [2]） In the spectral sequence, the non-zero
differentials are generated by

𝑑9 (Δ) � 𝑎𝑏4, 𝑑17 (𝑥1Δ
2) � 𝑎2𝑏

9,
𝑑25 (𝑎2Δ

3) � 𝑥1𝑏
12 and 𝑑33 (𝑎Δ4) � 𝑏17 .
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At 𝑝 = 7, the second Smith-Toda spectrum 𝑉 (3) exists. If
Conjecture 13 is true, then we have

𝐸∗,∗2 = 𝐸 (𝑎)⊗𝑃 (𝑎4, 𝑎
2
5, 𝑎

5
5,Δ, 𝑏){𝑥1, 𝑥2, 𝑥4}/(rels) ⇒ 𝜋∗ (𝑒𝑜6∧𝑉 (3)).

Conjecture 15 At 𝑝 ∈ {5, 7},

𝑑 (𝑝−3)𝑞+1 (𝑥1Δ
𝑝−3) � 𝑎𝑝−3𝑏

(𝑝−2)2
and 𝑑3𝑞+1 (𝑎𝑝−3Δ

3) � 𝑥1𝑏
3(𝑝−1) .

We notice that (𝑝 − 3)𝑞 + 1 < 3𝑞 + 1 if 𝑝 = 5, and
(𝑝 − 3)𝑞 + 1 > 3𝑞 + 1 if 𝑝 = 7. Therefore, even if the conjecture
holds, 𝐸 (𝑝−3)𝑞+2-term and 𝐸3𝑞+2-term have no general form for
𝑝 ≥ 5.
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