A spectrum which is quasi E-equivalent to the sphere spectrum

Ryo KATO*

Let p be a prime number and E(n).(—) the homology theory represented by the n-th Johnson-Wilson spectrum E(n)

at p. An E(n)-local spectrum X is an exotic sphere spectrum if E(n),(X) is isomorphic to the E(n),-homology of

the sphere spectrum as an E(n),(E(n))-comodule. Yosimura introduced the notion of quasi E-equivalence for a ring

spectrum E. Kamiya and Shimomura proved that an E(n)-local spectrum X is an exotic sphere spectrum if and only if

X belongs to a summand Pic®(£,,) of the Picard group of the E(n)-local stable homotopy category [1]. In this note, we

show that any E(n)-local exotic sphere spectrum is quasi E(n)-equivalent to the sphere spectrum. In addition, we prove

that an E(0)-local spectrum which is quasi E(0)-equivalent to the sphere spectrum is only the E(0)-localized sphere

spectrum.

1. Introduction

Let S be the stable homotopy category of spectra, and S¥
the k-dimensional sphere spectrum. For a spectrum E, we have
the Bousfield localization functor Lg: & — S with respect to
E. we denote Lr = Lg(S). Under the E-local smash product
Lg(— AN —=): Lg X Lg — Lg, the category L is a symmetric
monoidal category with the unit object L;S®. An E-local spec-
trum X is invertible in L if there exists a spectrum Y € Lg
such that Lg(X AY) = LgS°. The Picard group Pic(Lg) of L is
defined to be the collection of isomorphism classes of invertible
spectra. If the collection Pic(Lg) is a set, then the E-local smash
product defines a commutative group structure of Pic(Lg), that
is, [X]+ [Y] = [Le(X A Y)]. For the sake of simplicity, we
denote by X the class [X] € Pic(LE) represented by X.

For a spectrum E, the Bousfield class (E) of E is defined by
(E) = {X € 8: X AE = =}, where x is the point spectrum. We
also define the order of Bousfield classes by (E) > (F) &
(E) c (F). As a well-known result, (E) > (F) if and only if
LgLp = Lp = LpLg, particularly, Lp(Lg) = LF.

Let p be a prime number and S, the stable homotopy cat-
egory of p-local spectra. For any p and a non-negative integer
n, we have the n-th Johnson-Wilson spectrum E(n). Tradition-
ally, we denote L, = Lg(, and L, = Lgp). The spectrum
E(0) is the rational Eilenberg-Mac Lane spectrum, and so we
have Pic(Lo) = Z generated by LyS'. We know that if n > m,
then (E(n)) > (E(m)). In particular, for any n > 0, the re-
lation (E(n)) > (E(0)) holds. Therefore, since Lo(L,) = Lo,

the Bousfield localization functor Lj induces the homomorphism

fo: Pic(L,) — Pic(Ly) = Z of groups. This homomorphism
has a section, which assigns to an integer k the spectrum L, S* .
Put Pic®(£L,) = ker , and the group Pic(Lg) admits a decom-

position

(1) Pic(L,) =Z & Pic"(L,),

where the summand Z is generated by L,S'. In [1], Kamiya and
Shimomura showed that the isomorphism class of an E(n)-local
spectrum X is in Pic®(L,) if and only if the E(n),-homology of
X is isomorphic to the E(n).-homology of S as an E(n).(E(n))-
comodule. We call such X an exotic sphere spectrum in L.

Assume that E is a (unital, commutative and associative) ring
spectrum, and we denote by :: S — E and y: EAE — E
the unit map and the multiplication of E, respectively. A map
f: X — EAYin S is a quasi E-equivalence if the composite
(g AY)(E A f) is an isomorphism:

EAX ———=EAY

E/\fl

EANEANY

HAY

We say that X is quasi E-equivalent to Y if such f: X - EAY
exists, and denote X ~g Y. The collection O is defined to be
the collection of isomorphism classes of spectra which are quasi

E-equivalent to the sphere spectrum. We also denote ©,, = Of(p,).

Theorem 2 Pic’(L,) ¢ ©, for any p and n. Furthermore, if
@, is a set, then Pic®(£,,) is a subgroup of ©,,.

Theorem 8 ©y = {LyS"} for any p.
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We remark that, since Ly is a smashing localization functor
and E(0) is a field spectrum, any E(0)-local spectrum is the point
spectrum or a wedge sum of suspensions of E(0), that is, any
X € L satisfies that

X =LoX = X A LoS® = X A E(0) = * or \/Zk"E(O).
i

Theorem 3 claims that if an E(0)-local spectrum X satisfies that
X ~E0) S0, then only such X is E(0).

From theorems 2 and 3, we obtain another proof for Pic%( L) =
{LOSO} = 0, particularly, Pic(Lg) = Z. We expected that the
point of view yields another way for investigating Picard groups

Pic(Ly).

2. Properties of quasi E-equivalences

Let E be a ring spectrum whose structure is given by a unit
map ¢: S® — E and a multiplication y: EA E — E.

Lemma 4 For any spectrum X, the relation X ~g X holds.

Proof. For any spectrum X, themaph=:1AX: X > EAXisa
quasi E-equivalence. Indeed, (1 AX)(EAR) = (uAX)(EALAX)

is the identity map of E A X. Therefore, X ~p X. O

Proposition 5  Arbitrary X is quasi E-equivalent to LgX.

Proof. For the canonical map n: X — LgX, the composite
h=(EAn)(AX): X - EALgX is a quasi E-equivalence. In-
deed, we have (uALEX)(EAR) = (UALEX)(EAEAR)(EALAX) =
(EAn)(pAX)(EA1AX)=E An, which is an isomorphism. O

Lemma6 IfX ~gY,thenY ~g X.

Proof. Assume that X ~g Y, that is, there exists a quasi E-
equivalence f: X - EAY. Sinceh = (uAY)(EAf): EAX —

E A'Y is an isomorphism, we have an inverse h~! of h. Then, the

composite i’ = "' (1 AY): Y — E A X is a quasi E-equivalence.

Indeed, we have

(UAX)EAR) =R th(u AX)(EAR)
=h " (WAY)EAF)(pAX)(EAR)
=h Y (uAY)(UAEAY)(EAEAf)(EAR)
=h Y (UAYYEARAY)YEANEA)EAHK)
=h Y (uAY)EAREARYEALAY)
=h Y (UAYNEALAY)
=h"

Therefore, Y ~¢ X.
For any spectrum X, we denote by EX the E-module spectrum
E A X together with the structure p A X: EA(EAX) > EAX.

O

Proposition 7 For two spectra X and Y, the following are equiv-

alent:
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1. X~pY.
2. EX =~ EY as an E-module spectrum.

Proof. Assume that there exists a quasi E-equivalence f: X —
EAY, that s, the composite f = (UAY)(EAf): EAX — EAY

is an isomorphism. The map f satisfies that

FuAX)=@uAY)EA)(unX)
=(UAY)(UNEAY)(ENEANS)
=(UAY)(EAuAY)(ENEAY)

= (EAY)EA ),

and therefore f is an E-module isomorphism from EX to EY.
Conversely, we assume that there exists an E-module isomor-

phism g: EX — EY. Then, the composite g’ = g(t A X): X —

E AY is a quasi E-equivalence. Indeed, (u A Y)(EAg') =

UAYVEAPEAMAX)=g(pAX)(EANLAX) =g. O

We define
O = {XELES SO ~EX},

and denote by X the isomorphism class [X] € O.

Proposition 8 If the localization functor Lg is smashing, then

the collection O is closed under the ordinarily smash product.

Proof. Since Lg is smashing, there exists a natural equiva-
lence Lg(=) =~ (=) A LgS. This implies that, for any X and
Y are in L, the smash product X A Y is in L. Indeed,
XAY=XALgY =X AY ALES® = Lg(X A Y). Therefore, it
suffices to show that if S° ~g X and S ~f Y, then S° ~gXAY.

Assume that we have quasi E-equivalences f: S° — EAX and

g: S — E A X. Consider the composite
h=(UAXAY)EATxg AY)(fAg):S* > EAXAY,
and

(UAXAY)EAR)
=S(UAXAYNEAUANXAYYEANEANTxe AY)(EAfAQ)
=(UAXAY)(UAEAXAYYEANEATIxg AY)EAFAQ)
=(UAXAYYEATIxg AYYEAXAG(pAX)EAS)
=(EATy)(EAY AX)TxEreay(TEx NEAY)EAX Ag)(uAX)(E A S)
= (EATy)Txaay XA pAY)(Tgx AEAYIEAX A ) (uAX)(EA f)
=(EANTyx)Txeny XAUAYYXAEAQTEx(uAX)(EA f)

is an isomorphism. Therefore, SO~ X AY. |

For the E,-homology theory E.(-) = m.(E A —), we denote
E. = E.(S°) = m.(E), the coefficient ring of E.(-). For any
spectrum X, the E.-homology E.(X) is an E,-module, whose

structure is induced by the E-module structure of EX.

Proposition 9 For an E-local spectrum X, the following are

equivalent:

1. The spectrum X belongs to Of.
2. E.«(X) = E, as an E,-module.



Proof. Assume that E.(X) = E, as an E,-module. Then,
E.(X) = E.{g} for a generator g € Ey(X), and the gener-
ator g is a quasi E-equivalence from S° to E A X. Indeed,
the composite § = (# A X)(E A g) induces a homomorphism
g« = m(g9): E. = E.(X) of E,-modules. This homomorphism
satisfies that G, (1) = (UAX)(EA @i = (uAX)UANEAX)g=g.
Therefore, g, is an isomorphism, and so g is a quasi E-
equivalence.

Conversely, we assume that X is in ©g. By Proposition 7, the
relation S® ~¢ X implies that E = ES? ~ EX as an E-module

spectrum. Therefore, E. = E,(X) as an E,-module. O

3. Proof of main results

Consider the E(n)-local stable homotopy category L, at a
prime number p. For the Picard group Pic(L,), we have the de-
composition Pic(L,) = Z & Pic®(L,) in (1). For the summand
Pic®(£L,), Kamiya and Shimomura showed the following:

Theorem 10 ([1, Th.1.1])  Let X be an E(n)-local spectrum.
Then, X belongs to Pic’(L,,) if and only if E(n).(X) = E(n), as
an E(n).(E(n))-comodule.

Proof of Theorem 2. For any X € Pic®(L,), by Theorem 10,
the E(n).-homology E(n).(X) of X is isomorphic to E(n). as
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an E(n).(E(n))-comodule. This implies that, by definition of
E(n).(E(n))-comodule, E(n).(X) is isomorphic to E(n). as an
E(n).-module. This follows that X € ®,, by Proposition 9.
Recall that the localization functor Ly, is smashing, and this im-
plies that Pic®(£,,) is closed under the ordinarily smash product.
By Proposition 8, ©,, is also closed under ordinarily smash prod-
uct. Therefore, if ©,, is a set, then the inclusion Pic®(£,) c ©,

is a monomorphism of groups. O

Proof of Theorem 3. We know that the O-th Johnson-Wilson
spectrum E(0) is the rational Eilenberg-Mac Lane spectrum,
particularly, LoS® = E(0). If X belongs to g, then there ex-
ists a quasi E(0)-equivalence S — E(0) A X. In particular,
E(0) = E(0) A S° = E(0) A X. This implies that

(11) X =LoX =X ALyS® = X A E(0) = E(0) = LoS°,
and therefore ©y = {L(S°}. O

Remark 12 The isomorphism (11) exists even if there exists an
E(0)-equivalence f: S® — X, thatis, E(0) A f is an isomorphism.

Therefore, we have
Of C {X € Lo: X is E(0)-equivalent to SO} /= ={LeS"}.

We expect that the condition X € ©, implies more interesting

facts.
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