A spectrum which is quasi *E*-equivalent to the sphere spectrum

Ryo KATO*

Let *p* be a prime number and $E(n)_*(-)$ the homology theory represented by the *n*-th Johnson-Wilson spectrum E(n)at *p*. An E(n)-local spectrum *X* is an exotic sphere spectrum if $E(n)_*(X)$ is isomorphic to the $E(n)_*$ -homology of the sphere spectrum as an $E(n)_*(E(n))$ -comodule. Yosimura introduced the notion of quasi *E*-equivalence for a ring spectrum *E*. Kamiya and Shimomura proved that an E(n)-local spectrum *X* is an exotic sphere spectrum if and only if *X* belongs to a summand $\operatorname{Pic}^0(\mathcal{L}_n)$ of the Picard group of the E(n)-local stable homotopy category [1]. In this note, we show that any E(n)-local exotic sphere spectrum is quasi E(n)-equivalent to the sphere spectrum. In addition, we prove that an E(0)-local spectrum which is quasi E(0)-equivalent to the sphere spectrum is only the E(0)-localized sphere spectrum.

1. Introduction

Let S be the stable homotopy category of spectra, and S^k the k-dimensional sphere spectrum. For a spectrum E, we have the Bousfield localization functor $L_E: S \to S$ with respect to E. we denote $\mathcal{L}_E = L_E(S)$. Under the E-local smash product $L_E(- \wedge -): \mathcal{L}_E \times \mathcal{L}_E \to \mathcal{L}_E$, the category \mathcal{L}_E is a symmetric monoidal category with the unit object L_ES^0 . An E-local spectrum X is *invertible in* \mathcal{L}_E if there exists a spectrum $Y \in \mathcal{L}_E$ such that $L_E(X \wedge Y) = L_ES^0$. The Picard group $\operatorname{Pic}(\mathcal{L}_E)$ of \mathcal{L}_E is defined to be the collection of isomorphism classes of invertible spectra. If the collection $\operatorname{Pic}(\mathcal{L}_E)$ is a set, then the E-local smash product defines a commutative group structure of $\operatorname{Pic}(\mathcal{L}_E)$, that is, $[X] + [Y] = [L_E(X \wedge Y)]$. For the sake of simplicity, we denote by X the class $[X] \in \operatorname{Pic}(\mathcal{L}_E)$ represented by X.

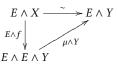
For a spectrum *E*, the *Bousfield class* $\langle E \rangle$ of *E* is defined by $\langle E \rangle = \{X \in S : X \land E = *\}$, where * is the point spectrum. We also define the order of Bousfield classes by $\langle E \rangle \ge \langle F \rangle \Leftrightarrow$ $\langle E \rangle \subset \langle F \rangle$. As a well-known result, $\langle E \rangle \ge \langle F \rangle$ if and only if $L_E L_F = L_F = L_F L_E$, particularly, $L_F(\mathcal{L}_E) = \mathcal{L}_F$.

Let *p* be a prime number and $S_{(p)}$ the stable homotopy category of *p*-local spectra. For any *p* and a non-negative integer *n*, we have the *n*-th Johnson-Wilson spectrum E(n). Traditionally, we denote $L_n = L_{E(n)}$ and $\mathcal{L}_n = \mathcal{L}_{E(n)}$. The spectrum E(0) is the rational Eilenberg-Mac Lane spectrum, and so we have $\text{Pic}(\mathcal{L}_0) = \mathbb{Z}$ generated by L_0S^1 . We know that if $n \ge m$, then $\langle E(n) \rangle \ge \langle E(m) \rangle$. In particular, for any $n \ge 0$, the relation $\langle E(n) \rangle \ge \langle E(0) \rangle$ holds. Therefore, since $L_0(\mathcal{L}_n) = \mathcal{L}_0$, the Bousfield localization functor L_0 induces the homomorphism $\ell_0: \operatorname{Pic}(\mathcal{L}_n) \to \operatorname{Pic}(\mathcal{L}_0) = \mathbb{Z}$ of groups. This homomorphism has a section, which assigns to an integer *k* the spectrum $L_n S^k$. Put $\operatorname{Pic}^0(\mathcal{L}_n) = \ker \ell_0$, and the group $\operatorname{Pic}(\mathcal{L}_E)$ admits a decomposition

(1)
$$\operatorname{Pic}(\mathcal{L}_n) = \mathbb{Z} \oplus \operatorname{Pic}^0(\mathcal{L}_n),$$

where the summand \mathbb{Z} is generated by $L_n S^1$. In [1], Kamiya and Shimomura showed that the isomorphism class of an E(n)-local spectrum X is in Pic⁰(\mathcal{L}_n) if and only if the $E(n)_*$ -homology of X is isomorphic to the $E(n)_*$ -homology of S^0 as an $E(n)_*(E(n))$ comodule. We call such X an *exotic sphere spectrum* in \mathcal{L}_n .

Assume that *E* is a (unital, commutative and associative) ring spectrum, and we denote by $\iota: S^0 \to E$ and $\mu: E \land E \to E$ the unit map and the multiplication of *E*, respectively. A map $f: X \to E \land Y$ in *S* is a *quasi E-equivalence* if the composite $(\mu \land Y)(E \land f)$ is an isomorphism:



We say that *X* is quasi *E*-equivalent to *Y* if such $f: X \to E \land Y$ exists, and denote $X \sim_E Y$. The collection Θ_E is defined to be the collection of isomorphism classes of spectra which are quasi *E*-equivalent to the sphere spectrum. We also denote $\Theta_n = \Theta_{E(n)}$.

Theorem 2 $\operatorname{Pic}^{0}(\mathcal{L}_{n}) \subset \Theta_{n}$ for any p and n. Furthermore, if Θ_{n} is a set, then $\operatorname{Pic}^{0}(\mathcal{L}_{n})$ is a subgroup of Θ_{n} .

Theorem 3 $\Theta_0 = \{L_0 S^0\}$ for any *p*.

Received Dec. 23, 2020

^{*} Faculty of Fundamental Science, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580, Japan

We remark that, since L_0 is a smashing localization functor and E(0) is a field spectrum, any E(0)-local spectrum is the point spectrum or a wedge sum of suspensions of E(0), that is, any $X \in \mathcal{L}_0$ satisfies that

$$X = L_0 X = X \wedge L_0 S^0 = X \wedge E(0) = * \text{ or } \bigvee_i \Sigma^{k_i} E(0).$$

Theorem 3 claims that if an E(0)-local spectrum X satisfies that $X \sim_{E(0)} S^0$, then only such X is E(0).

From theorems 2 and 3, we obtain another proof for $\operatorname{Pic}^{0}(\mathcal{L}_{0}) = \{L_{0}S^{0}\} = 0$, particularly, $\operatorname{Pic}(\mathcal{L}_{0}) = \mathbb{Z}$. We expected that the point of view yields another way for investigating Picard groups $\operatorname{Pic}(\mathcal{L}_{n})$.

2. Properties of quasi *E*-equivalences

Let *E* be a ring spectrum whose structure is given by a unit map $\iota: S^0 \to E$ and a multiplication $\mu: E \land E \to E$.

Lemma 4 For any spectrum X, the relation $X \sim_E X$ holds.

Proof. For any spectrum *X*, the map $h = \iota \land X : X \to E \land X$ is a quasi *E*-equivalence. Indeed, $(\mu \land X)(E \land h) = (\mu \land X)(E \land \iota \land X)$ is the identity map of $E \land X$. Therefore, $X \sim_E X$.

Proposition 5 Arbitrary X is quasi E-equivalent to $L_E X$.

Proof. For the canonical map $\eta: X \to L_E X$, the composite $h = (E \land \eta)(\iota \land X): X \to E \land L_E X$ is a quasi *E*-equivalence. Indeed, we have $(\mu \land L_E X)(E \land h) = (\mu \land L_E X)(E \land E \land \eta)(E \land \iota \land X) = (E \land \eta)(\mu \land X)(E \land \iota \land X) = E \land \eta$, which is an isomorphism. \Box

Lemma 6 If $X \sim_E Y$, then $Y \sim_E X$.

Proof. Assume that $X \sim_E Y$, that is, there exists a quasi *E*-equivalence $f: X \to E \wedge Y$. Since $h = (\mu \wedge Y)(E \wedge f): E \wedge X \to E \wedge Y$ is an isomorphism, we have an inverse h^{-1} of h. Then, the composite $h' = h^{-1}(\iota \wedge Y): Y \to E \wedge X$ is a quasi *E*-equivalence. Indeed, we have

$$\begin{aligned} (\mu \wedge X)(E \wedge h') &= h^{-1}h(\mu \wedge X)(E \wedge h') \\ &= h^{-1}(\mu \wedge Y)(E \wedge f)(\mu \wedge X)(E \wedge h') \\ &= h^{-1}(\mu \wedge Y)(\mu \wedge E \wedge Y)(E \wedge E \wedge f)(E \wedge h') \\ &= h^{-1}(\mu \wedge Y)(E \wedge \underline{\mu} \wedge \underline{Y})(E \wedge \underline{E} \wedge f)(E \wedge h') \\ &= h^{-1}(\mu \wedge Y)(E \wedge \underline{h})(E \wedge h^{-1})(E \wedge \iota \wedge Y) \\ &= h^{-1}(\mu \wedge Y)(E \wedge \iota \wedge Y) \\ &= h^{-1}. \end{aligned}$$

Therefore, $Y \sim_E X$.

For any spectrum *X*, we denote by *EX* the *E*-module spectrum $E \wedge X$ together with the structure $\mu \wedge X : E \wedge (E \wedge X) \rightarrow E \wedge X$.

Proposition 7 For two spectra *X* and *Y*, the following are equivalent:

- 1. $X \sim_E Y$.
- 2. $EX \simeq EY$ as an *E*-module spectrum.

Proof. Assume that there exists a quasi *E*-equivalence $f: X \to E \wedge Y$, that is, the composite $\overline{f} = (\mu \wedge Y)(E \wedge f): E \wedge X \to E \wedge Y$ is an isomorphism. The map \overline{f} satisfies that

$$\bar{f}(\mu \wedge X) = (\mu \wedge Y)(E \wedge f)(\mu \wedge X)$$

= $(\mu \wedge Y)(\mu \wedge E \wedge Y)(E \wedge E \wedge f)$
= $(\mu \wedge Y)(E \wedge \mu \wedge Y)(E \wedge E \wedge f)$
= $(\mu \wedge Y)(E \wedge \bar{f}),$

and therefore \bar{f} is an *E*-module isomorphism from *EX* to *EY*.

Conversely, we assume that there exists an *E*-module isomorphism $g: EX \to EY$. Then, the composite $g' = g(\iota \land X): X \to E \land Y$ is a quasi *E*-equivalence. Indeed, $(\mu \land Y)(E \land g') = (\mu \land Y)(E \land g)(E \land \iota \land X) = g(\mu \land X)(E \land \iota \land X) = g$.

We define

$$\Theta_E = \left\{ X \in \mathcal{L}_E \colon S^0 \sim_E X \right\},\$$

and denote by X the isomorphism class $[X] \in \Theta_E$.

Proposition 8 If the localization functor L_E is smashing, then the collection Θ_E is closed under the ordinarily smash product.

Proof. Since L_E is smashing, there exists a natural equivalence $L_E(-) \simeq (-) \land L_E S^0$. This implies that, for any X and Y are in \mathcal{L}_E , the smash product $X \land Y$ is in \mathcal{L}_E . Indeed, $X \land Y = X \land L_E Y = X \land Y \land L_E S^0 = L_E(X \land Y)$. Therefore, it suffices to show that if $S^0 \sim_E X$ and $S^0 \sim_E Y$, then $S^0 \sim_E X \land Y$.

Assume that we have quasi *E*-equivalences $f: S^0 \to E \wedge X$ and $g: S^0 \to E \wedge X$. Consider the composite

$$h = (\mu \land X \land Y)(E \land T_{X,E} \land Y)(f \land q) \colon S^0 \to E \land X \land Y,$$

and

$$\begin{aligned} (\mu \wedge X \wedge Y)(E \wedge h) \\ &= (\mu \wedge X \wedge Y)(E \wedge \mu \wedge X \wedge Y)(E \wedge E \wedge T_{X,E} \wedge Y)(E \wedge f \wedge g) \\ &= (\mu \wedge X \wedge Y)(\mu \wedge E \wedge X \wedge Y)(E \wedge E \wedge T_{X,E} \wedge Y)(E \wedge f \wedge g) \\ &= (\mu \wedge X \wedge Y)(E \wedge T_{X,E} \wedge Y)(E \wedge X \wedge g)(\mu \wedge X)(E \wedge f) \\ &= (E \wedge T_{Y,X})(\mu \wedge Y \wedge X)T_{X,E \wedge E \wedge Y}(T_{E,X} \wedge E \wedge Y)(E \wedge X \wedge g)(\mu \wedge X)(E \wedge f) \\ &= (E \wedge T_{Y,X})T_{X,E \wedge Y}(X \wedge \mu \wedge Y)(T_{E,X} \wedge E \wedge Y)(E \wedge X \wedge g)(\mu \wedge X)(E \wedge f) \\ &= (E \wedge T_{Y,X})T_{X,E \wedge Y}(X \wedge \mu \wedge Y)(X \wedge E \wedge g)T_{E,X}(\mu \wedge X)(E \wedge f) \end{aligned}$$

is an isomorphism. Therefore, $S^0 \sim_E X \wedge Y$.

For the E_* -homology theory $E_*(-) = \pi_*(E \wedge -)$, we denote $E_* = E_*(S^0) = \pi_*(E)$, the coefficient ring of $E_*(-)$. For any spectrum X, the E_* -homology $E_*(X)$ is an E_* -module, whose structure is induced by the E-module structure of EX.

Proposition 9 For an *E*-local spectrum X, the following are equivalent:

- 1. The spectrum X belongs to Θ_E .
- 2. $E_*(X) \cong E_*$ as an E_* -module.

П

Proof. Assume that $E_*(X) \cong E_*$ as an E_* -module. Then, $E_*(X) = E_*\{g\}$ for a generator $g \in E_0(X)$, and the generator g is a quasi E-equivalence from S^0 to $E \wedge X$. Indeed, the composite $\bar{g} = (\mu \wedge X)(E \wedge g)$ induces a homomorphism $\bar{g}_* = \pi_*(g) : E_* \to E_*(X)$ of E_* -modules. This homomorphism satisfies that $\bar{g}_*(\iota) = (\mu \wedge X)(E \wedge g)\iota = (\mu \wedge X)(\iota \wedge E \wedge X)g = g$. Therefore, \bar{g}_* is an isomorphism, and so g is a quasi Eequivalence.

Conversely, we assume that X is in Θ_E . By Proposition 7, the relation $S^0 \sim_E X$ implies that $E = ES^0 \simeq EX$ as an *E*-module spectrum. Therefore, $E_* \cong E_*(X)$ as an E_* -module.

3. Proof of main results

Consider the E(n)-local stable homotopy category \mathcal{L}_n at a prime number p. For the Picard group $\operatorname{Pic}(\mathcal{L}_n)$, we have the decomposition $\operatorname{Pic}(\mathcal{L}_n) = \mathbb{Z} \oplus \operatorname{Pic}^0(\mathcal{L}_n)$ in (1). For the summand $\operatorname{Pic}^0(\mathcal{L}_n)$, Kamiya and Shimomura showed the following:

Theorem 10 ([1, Th. 1.1]) Let X be an E(n)-local spectrum. Then, X belongs to $\operatorname{Pic}^{0}(\mathcal{L}_{n})$ if and only if $E(n)_{*}(X) = E(n)_{*}$ as an $E(n)_{*}(E(n))$ -comodule.

Proof of Theorem 2. For any $X \in \text{Pic}^{0}(\mathcal{L}_{n})$, by Theorem 10, the $E(n)_{*}$ -homology $E(n)_{*}(X)$ of X is isomorphic to $E(n)_{*}$ as

an $E(n)_*(E(n))$ -comodule. This implies that, by definition of $E(n)_*(E(n))$ -comodule, $E(n)_*(X)$ is isomorphic to $E(n)_*$ as an $E(n)_*$ -module. This follows that $X \in \Theta_n$ by Proposition 9.

Recall that the localization functor L_n is smashing, and this implies that $\operatorname{Pic}^0(\mathcal{L}_n)$ is closed under the ordinarily smash product. By Proposition 8, Θ_n is also closed under ordinarily smash product. Therefore, if Θ_n is a set, then the inclusion $\operatorname{Pic}^0(\mathcal{L}_n) \subset \Theta_n$ is a monomorphism of groups.

Proof of Theorem 3. We know that the 0-th Johnson-Wilson spectrum E(0) is the rational Eilenberg-Mac Lane spectrum, particularly, $L_0S^0 = E(0)$. If X belongs to Θ_0 , then there exists a quasi E(0)-equivalence $S^0 \rightarrow E(0) \wedge X$. In particular, $E(0) = E(0) \wedge S^0 = E(0) \wedge X$. This implies that

(11)
$$X = L_0 X = X \wedge L_0 S^0 = X \wedge E(0) = E(0) = L_0 S^0,$$

and therefore
$$\Theta_0 = \{L_0 S^0\}$$
.

Remark 12 The isomorphism (11) exists even if there exists an E(0)-equivalence $f: S^0 \to X$, that is, $E(0) \wedge f$ is an isomorphism. Therefore, we have

$$\Theta_E \subset \{X \in \mathcal{L}_0 : X \text{ is } E(0) \text{-equivalent to } S^0\} / \simeq = \{L_0 S^0\}.$$

We expect that the condition $X \in \Theta_n$ implies more interesting facts.

References

Y. Kamiya and K. Shimomura, A relation between the Picard group of the *E*(*n*)-local homotopy category and *E*(*n*)-based Adams spectral sequence, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic *K*-theory, Contemp. Math., **346** (Amer. Math. Soc., Providence, RI, 2004), 321–333.