
A spectrum which is quasi 𝐸-equivalent to the sphere spectrum
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Let 𝑝 be a prime number and 𝐸 (𝑛)∗ (−) the homology theory represented by the 𝑛-th Johnson-Wilson spectrum 𝐸 (𝑛)
at 𝑝. An 𝐸 (𝑛)-local spectrum 𝑋 is an exotic sphere spectrum if 𝐸 (𝑛)∗ (𝑋 ) is isomorphic to the 𝐸 (𝑛)∗-homology of
the sphere spectrum as an 𝐸 (𝑛)∗ (𝐸 (𝑛))-comodule. Yosimura introduced the notion of quasi 𝐸-equivalence for a ring
spectrum 𝐸. Kamiya and Shimomura proved that an 𝐸 (𝑛)-local spectrum 𝑋 is an exotic sphere spectrum if and only if
𝑋 belongs to a summand Pic0 (L𝑛) of the Picard group of the 𝐸 (𝑛)-local stable homotopy category [1]. In this note, we
show that any 𝐸 (𝑛)-local exotic sphere spectrum is quasi 𝐸 (𝑛)-equivalent to the sphere spectrum. In addition, we prove
that an 𝐸 (0)-local spectrum which is quasi 𝐸 (0)-equivalent to the sphere spectrum is only the 𝐸 (0)-localized sphere
spectrum.

1. Introduction
Let S be the stable homotopy category of spectra, and 𝑆𝑘

the 𝑘-dimensional sphere spectrum. For a spectrum 𝐸, we have
the Bousfield localization functor 𝐿𝐸 : S → S with respect to
𝐸. we denote L𝐸 = 𝐿𝐸 (S). Under the 𝐸-local smash product
𝐿𝐸 (− ∧ −) : L𝐸 × L𝐸 → L𝐸 , the category L𝐸 is a symmetric
monoidal category with the unit object 𝐿𝐸𝑆0. An 𝐸-local spec-
trum 𝑋 is invertible in L𝐸 if there exists a spectrum 𝑌 ∈ L𝐸

such that 𝐿𝐸 (𝑋 ∧𝑌 ) = 𝐿𝐸𝑆0. The Picard group Pic(L𝐸) of L𝐸 is
defined to be the collection of isomorphism classes of invertible
spectra. If the collection Pic(L𝐸) is a set, then the 𝐸-local smash
product defines a commutative group structure of Pic(L𝐸), that
is, [𝑋 ] + [𝑌 ] = [𝐿𝐸 (𝑋 ∧ 𝑌 )]. For the sake of simplicity, we
denote by 𝑋 the class [𝑋 ] ∈ Pic(L𝐸) represented by 𝑋 .

For a spectrum 𝐸, the Bousfield class 〈𝐸〉 of 𝐸 is defined by
〈𝐸〉 = {𝑋 ∈ S : 𝑋 ∧ 𝐸 = ∗}, where ∗ is the point spectrum. We
also define the order of Bousfield classes by 〈𝐸〉 ≥ 〈𝐹 〉 ⇔
〈𝐸〉 ⊂ 〈𝐹 〉. As a well-known result, 〈𝐸〉 ≥ 〈𝐹 〉 if and only if
𝐿𝐸𝐿𝐹 = 𝐿𝐹 = 𝐿𝐹𝐿𝐸 , particularly, 𝐿𝐹 (L𝐸) = L𝐹 .

Let 𝑝 be a prime number and S(𝑝) the stable homotopy cat-
egory of 𝑝-local spectra. For any 𝑝 and a non-negative integer
𝑛, we have the 𝑛-th Johnson-Wilson spectrum 𝐸 (𝑛). Tradition-
ally, we denote 𝐿𝑛 = 𝐿𝐸 (𝑛) and L𝑛 = L𝐸 (𝑛) . The spectrum
𝐸 (0) is the rational Eilenberg-Mac Lane spectrum, and so we
have Pic(L0) = Z generated by 𝐿0𝑆

1. We know that if 𝑛 ≥ 𝑚,
then 〈𝐸 (𝑛)〉 ≥ 〈𝐸 (𝑚)〉. In particular, for any 𝑛 ≥ 0, the re-
lation 〈𝐸 (𝑛)〉 ≥ 〈𝐸 (0)〉 holds. Therefore, since 𝐿0 (L𝑛) = L0,
the Bousfield localization functor 𝐿0 induces the homomorphism

ℓ0 : Pic(L𝑛) → Pic(L0) = Z of groups. This homomorphism
has a section, which assigns to an integer 𝑘 the spectrum 𝐿𝑛𝑆

𝑘 .
Put Pic0 (L𝑛) = ker ℓ0, and the group Pic(L𝐸) admits a decom-
position

(1) Pic(L𝑛) = Z ⊕ Pic0 (L𝑛),

where the summand Z is generated by 𝐿𝑛𝑆1. In [1], Kamiya and
Shimomura showed that the isomorphism class of an 𝐸 (𝑛)-local
spectrum 𝑋 is in Pic0 (L𝑛) if and only if the 𝐸 (𝑛)∗-homology of
𝑋 is isomorphic to the 𝐸 (𝑛)∗-homology of 𝑆0 as an 𝐸 (𝑛)∗ (𝐸 (𝑛))-
comodule. We call such 𝑋 an exotic sphere spectrum in L𝑛 .

Assume that 𝐸 is a (unital, commutative and associative) ring
spectrum, and we denote by 𝜄 : 𝑆0 → 𝐸 and 𝜇 : 𝐸 ∧ 𝐸 → 𝐸

the unit map and the multiplication of 𝐸, respectively. A map
𝑓 : 𝑋 → 𝐸 ∧ 𝑌 in S is a quasi 𝐸-equivalence if the composite
(𝜇 ∧ 𝑌 )(𝐸 ∧ 𝑓 ) is an isomorphism:

𝐸 ∧ 𝑋 ∼ //

𝐸∧𝑓
��

𝐸 ∧ 𝑌

𝐸 ∧ 𝐸 ∧ 𝑌
𝜇∧𝑌

99rrrrrrrrrr

We say that 𝑋 is quasi 𝐸-equivalent to 𝑌 if such 𝑓 : 𝑋 → 𝐸 ∧ 𝑌
exists, and denote 𝑋 ∼𝐸 𝑌 . The collection Θ𝐸 is defined to be
the collection of isomorphism classes of spectra which are quasi
𝐸-equivalent to the sphere spectrum. We also denoteΘ𝑛 = Θ𝐸 (𝑛) .

Theorem 2 Pic0 (L𝑛) ⊂ Θ𝑛 for any 𝑝 and 𝑛. Furthermore, if
Θ𝑛 is a set, then Pic0 (L𝑛) is a subgroup of Θ𝑛 .

Theorem 3 Θ0 =
{
𝐿0𝑆

0} for any 𝑝.
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We remark that, since 𝐿0 is a smashing localization functor
and 𝐸 (0) is a field spectrum, any 𝐸 (0)-local spectrum is the point
spectrum or a wedge sum of suspensions of 𝐸 (0), that is, any
𝑋 ∈ L0 satisfies that

𝑋 = 𝐿0𝑋 = 𝑋 ∧ 𝐿0𝑆
0 = 𝑋 ∧ 𝐸 (0) = ∗ or

∨
𝑖

Σ𝑘𝑖𝐸 (0).

Theorem 3 claims that if an 𝐸 (0)-local spectrum 𝑋 satisfies that
𝑋 ∼𝐸 (0) 𝑆

0, then only such 𝑋 is 𝐸 (0).
From theorems 2 and 3, we obtain another proof for Pic0 (L0) ={
𝐿0𝑆

0} = 0, particularly, Pic(L0) = Z. We expected that the
point of view yields another way for investigating Picard groups
Pic(L𝑛).

2. Properties of quasi 𝐸-equivalences
Let 𝐸 be a ring spectrum whose structure is given by a unit

map 𝜄 : 𝑆0 → 𝐸 and a multiplication 𝜇 : 𝐸 ∧ 𝐸 → 𝐸.

Lemma 4 For any spectrum 𝑋 , the relation 𝑋 ∼𝐸 𝑋 holds.

Proof. For any spectrum 𝑋 , the map ℎ = 𝜄 ∧ 𝑋 : 𝑋 → 𝐸 ∧ 𝑋 is a
quasi 𝐸-equivalence. Indeed, (𝜇∧𝑋 ) (𝐸∧ℎ) = (𝜇∧𝑋 )(𝐸∧𝜄∧𝑋 )
is the identity map of 𝐸 ∧ 𝑋 . Therefore, 𝑋 ∼𝐸 𝑋 . �

Proposition 5 Arbitrary 𝑋 is quasi 𝐸-equivalent to 𝐿𝐸𝑋 .

Proof. For the canonical map 𝜂 : 𝑋 → 𝐿𝐸𝑋 , the composite
ℎ = (𝐸 ∧ 𝜂)(𝜄 ∧𝑋 ) : 𝑋 → 𝐸 ∧ 𝐿𝐸𝑋 is a quasi 𝐸-equivalence. In-
deed, we have (𝜇∧𝐿𝐸𝑋 )(𝐸∧ℎ) = (𝜇∧𝐿𝐸𝑋 ) (𝐸∧𝐸∧𝜂) (𝐸∧𝜄∧𝑋 ) =
(𝐸 ∧ 𝜂)(𝜇 ∧𝑋 )(𝐸 ∧ 𝜄 ∧𝑋 ) = 𝐸 ∧ 𝜂, which is an isomorphism. �

Lemma 6 If 𝑋 ∼𝐸 𝑌 , then 𝑌 ∼𝐸 𝑋 .

Proof. Assume that 𝑋 ∼𝐸 𝑌 , that is, there exists a quasi 𝐸-
equivalence 𝑓 : 𝑋 → 𝐸 ∧𝑌 . Since ℎ = (𝜇 ∧𝑌 )(𝐸 ∧ 𝑓 ) : 𝐸 ∧𝑋 →
𝐸 ∧𝑌 is an isomorphism, we have an inverse ℎ−1 of ℎ. Then, the
composite ℎ′ = ℎ−1 (𝜄 ∧𝑌 ) : 𝑌 → 𝐸 ∧𝑋 is a quasi 𝐸-equivalence.
Indeed, we have

(𝜇 ∧ 𝑋 )(𝐸 ∧ ℎ′) = ℎ−1ℎ(𝜇 ∧ 𝑋 ) (𝐸 ∧ ℎ′)
= ℎ−1 (𝜇 ∧ 𝑌 )(𝐸 ∧ 𝑓 ) (𝜇 ∧ 𝑋 )(𝐸 ∧ ℎ′)
= ℎ−1 (𝜇 ∧ 𝑌 )(𝜇 ∧ 𝐸 ∧ 𝑌 ) (𝐸 ∧ 𝐸 ∧ 𝑓 )(𝐸 ∧ ℎ′)
= ℎ−1 (𝜇 ∧ 𝑌 )(𝐸 ∧ 𝜇 ∧ 𝑌 ) (𝐸 ∧ 𝐸 ∧ 𝑓 )(𝐸 ∧ ℎ′)

= ℎ−1 (𝜇 ∧ 𝑌 )(𝐸 ∧ ℎ) (𝐸 ∧ ℎ−1) (𝐸 ∧ 𝜄 ∧ 𝑌 )
= ℎ−1 (𝜇 ∧ 𝑌 )(𝐸 ∧ 𝜄 ∧ 𝑌 )
= ℎ−1 .

Therefore, 𝑌 ∼𝐸 𝑋 . �

For any spectrum 𝑋 , we denote by 𝐸𝑋 the 𝐸-module spectrum
𝐸 ∧ 𝑋 together with the structure 𝜇 ∧ 𝑋 : 𝐸 ∧ (𝐸 ∧ 𝑋 ) → 𝐸 ∧ 𝑋 .

Proposition 7 For two spectra𝑋 and𝑌 , the following are equiv-
alent:

1. 𝑋 ∼𝐸 𝑌 .
2. 𝐸𝑋 ' 𝐸𝑌 as an 𝐸-module spectrum.

Proof. Assume that there exists a quasi 𝐸-equivalence 𝑓 : 𝑋 →
𝐸 ∧𝑌 , that is, the composite 𝑓 = (𝜇 ∧𝑌 ) (𝐸 ∧ 𝑓 ) : 𝐸 ∧𝑋 → 𝐸 ∧𝑌
is an isomorphism. The map 𝑓 satisfies that

𝑓 (𝜇 ∧ 𝑋 ) = (𝜇 ∧ 𝑌 )(𝐸 ∧ 𝑓 ) (𝜇 ∧ 𝑋 )
= (𝜇 ∧ 𝑌 )(𝜇 ∧ 𝐸 ∧ 𝑌 )(𝐸 ∧ 𝐸 ∧ 𝑓 )
= (𝜇 ∧ 𝑌 )(𝐸 ∧ 𝜇 ∧ 𝑌 )(𝐸 ∧ 𝐸 ∧ 𝑓 )
= (𝜇 ∧ 𝑌 )(𝐸 ∧ 𝑓 ),

and therefore 𝑓 is an 𝐸-module isomorphism from 𝐸𝑋 to 𝐸𝑌 .
Conversely, we assume that there exists an 𝐸-module isomor-

phism 𝑔 : 𝐸𝑋 → 𝐸𝑌 . Then, the composite 𝑔′ = 𝑔(𝜄 ∧ 𝑋 ) : 𝑋 →
𝐸 ∧ 𝑌 is a quasi 𝐸-equivalence. Indeed, (𝜇 ∧ 𝑌 ) (𝐸 ∧ 𝑔′) =

(𝜇 ∧ 𝑌 )(𝐸 ∧ 𝑔) (𝐸 ∧ 𝜄 ∧ 𝑋 ) = 𝑔(𝜇 ∧ 𝑋 )(𝐸 ∧ 𝜄 ∧ 𝑋 ) = 𝑔. �

We define
Θ𝐸 =

{
𝑋 ∈ L𝐸 : 𝑆0 ∼𝐸 𝑋

}
,

and denote by 𝑋 the isomorphism class [𝑋 ] ∈ Θ𝐸 .

Proposition 8 If the localization functor 𝐿𝐸 is smashing, then
the collection Θ𝐸 is closed under the ordinarily smash product.

Proof. Since 𝐿𝐸 is smashing, there exists a natural equiva-
lence 𝐿𝐸 (−) ' (−) ∧ 𝐿𝐸𝑆

0. This implies that, for any 𝑋 and
𝑌 are in L𝐸 , the smash product 𝑋 ∧ 𝑌 is in L𝐸 . Indeed,
𝑋 ∧ 𝑌 = 𝑋 ∧ 𝐿𝐸𝑌 = 𝑋 ∧ 𝑌 ∧ 𝐿𝐸𝑆0 = 𝐿𝐸 (𝑋 ∧ 𝑌 ). Therefore, it
suffices to show that if 𝑆0 ∼𝐸 𝑋 and 𝑆0 ∼𝐸 𝑌 , then 𝑆0 ∼𝐸 𝑋 ∧ 𝑌 .

Assume that we have quasi 𝐸-equivalences 𝑓 : 𝑆0 → 𝐸∧𝑋 and
𝑔 : 𝑆0 → 𝐸 ∧ 𝑋 . Consider the composite

ℎ = (𝜇 ∧ 𝑋 ∧ 𝑌 ) (𝐸 ∧𝑇𝑋,𝐸 ∧ 𝑌 ) (𝑓 ∧ 𝑔) : 𝑆0 → 𝐸 ∧ 𝑋 ∧ 𝑌,

and

(𝜇 ∧ 𝑋 ∧ 𝑌 )(𝐸 ∧ ℎ)
= (𝜇 ∧ 𝑋 ∧ 𝑌 )(𝐸 ∧ 𝜇 ∧ 𝑋 ∧ 𝑌 )(𝐸 ∧ 𝐸 ∧𝑇𝑋,𝐸 ∧ 𝑌 )(𝐸 ∧ 𝑓 ∧ 𝑔)
= (𝜇 ∧ 𝑋 ∧ 𝑌 )(𝜇 ∧ 𝐸 ∧ 𝑋 ∧ 𝑌 )(𝐸 ∧ 𝐸 ∧𝑇𝑋,𝐸 ∧ 𝑌 )(𝐸 ∧ 𝑓 ∧ 𝑔)
= (𝜇 ∧ 𝑋 ∧ 𝑌 )(𝐸 ∧𝑇𝑋,𝐸 ∧ 𝑌 )(𝐸 ∧ 𝑋 ∧ 𝑔) (𝜇 ∧ 𝑋 ) (𝐸 ∧ 𝑓 )
= (𝐸 ∧𝑇𝑌,𝑋 )(𝜇 ∧ 𝑌 ∧ 𝑋 )𝑇𝑋,𝐸∧𝐸∧𝑌 (𝑇𝐸,𝑋 ∧ 𝐸 ∧ 𝑌 )(𝐸 ∧ 𝑋 ∧ 𝑔) (𝜇 ∧ 𝑋 ) (𝐸 ∧ 𝑓 )
= (𝐸 ∧𝑇𝑌,𝑋 )𝑇𝑋,𝐸∧𝑌 (𝑋 ∧ 𝜇 ∧ 𝑌 )(𝑇𝐸,𝑋 ∧ 𝐸 ∧ 𝑌 )(𝐸 ∧ 𝑋 ∧ 𝑔) (𝜇 ∧ 𝑋 ) (𝐸 ∧ 𝑓 )
= (𝐸 ∧𝑇𝑌,𝑋 )𝑇𝑋,𝐸∧𝑌 (𝑋 ∧ 𝜇 ∧ 𝑌 ) (𝑋 ∧ 𝐸 ∧ 𝑔)𝑇𝐸,𝑋 (𝜇 ∧ 𝑋 ) (𝐸 ∧ 𝑓 )

is an isomorphism. Therefore, 𝑆0 ∼𝐸 𝑋 ∧ 𝑌 . �

For the 𝐸∗-homology theory 𝐸∗ (−) = 𝜋∗ (𝐸 ∧ −), we denote
𝐸∗ = 𝐸∗ (𝑆0) = 𝜋∗ (𝐸), the coefficient ring of 𝐸∗ (−). For any
spectrum 𝑋 , the 𝐸∗-homology 𝐸∗ (𝑋 ) is an 𝐸∗-module, whose
structure is induced by the 𝐸-module structure of 𝐸𝑋 .

Proposition 9 For an 𝐸-local spectrum 𝑋 , the following are
equivalent:

1. The spectrum 𝑋 belongs to Θ𝐸 .
2. 𝐸∗ (𝑋 ) � 𝐸∗ as an 𝐸∗-module.
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Proof. Assume that 𝐸∗ (𝑋 ) � 𝐸∗ as an 𝐸∗-module. Then,
𝐸∗ (𝑋 ) = 𝐸∗{𝑔} for a generator 𝑔 ∈ 𝐸0 (𝑋 ), and the gener-
ator 𝑔 is a quasi 𝐸-equivalence from 𝑆0 to 𝐸 ∧ 𝑋 . Indeed,
the composite 𝑔 = (𝜇 ∧ 𝑋 ) (𝐸 ∧ 𝑔) induces a homomorphism
𝑔∗ = 𝜋∗ (𝑔) : 𝐸∗ → 𝐸∗ (𝑋 ) of 𝐸∗-modules. This homomorphism
satisfies that 𝑔∗ (𝜄) = (𝜇 ∧𝑋 )(𝐸 ∧𝑔)𝜄 = (𝜇 ∧𝑋 ) (𝜄 ∧ 𝐸 ∧𝑋 )𝑔 = 𝑔.
Therefore, 𝑔∗ is an isomorphism, and so 𝑔 is a quasi 𝐸-
equivalence.

Conversely, we assume that 𝑋 is in Θ𝐸 . By Proposition 7, the
relation 𝑆0 ∼𝐸 𝑋 implies that 𝐸 = 𝐸𝑆0 ' 𝐸𝑋 as an 𝐸-module
spectrum. Therefore, 𝐸∗ � 𝐸∗ (𝑋 ) as an 𝐸∗-module. �

3. Proof of main results

Consider the 𝐸 (𝑛)-local stable homotopy category L𝑛 at a
prime number 𝑝. For the Picard group Pic(L𝑛), we have the de-
composition Pic(L𝑛) = Z ⊕ Pic0 (L𝑛) in (1). For the summand
Pic0 (L𝑛), Kamiya and Shimomura showed the following:

Theorem 10（[1, Th. 1.1]） Let 𝑋 be an 𝐸 (𝑛)-local spectrum.
Then, 𝑋 belongs to Pic0 (L𝑛) if and only if 𝐸 (𝑛)∗ (𝑋 ) = 𝐸 (𝑛)∗ as
an 𝐸 (𝑛)∗ (𝐸 (𝑛))-comodule.

Proof of Theorem 2. For any 𝑋 ∈ Pic0 (L𝑛), by Theorem 10,
the 𝐸 (𝑛)∗-homology 𝐸 (𝑛)∗ (𝑋 ) of 𝑋 is isomorphic to 𝐸 (𝑛)∗ as

an 𝐸 (𝑛)∗ (𝐸 (𝑛))-comodule. This implies that, by definition of
𝐸 (𝑛)∗ (𝐸 (𝑛))-comodule, 𝐸 (𝑛)∗ (𝑋 ) is isomorphic to 𝐸 (𝑛)∗ as an
𝐸 (𝑛)∗-module. This follows that 𝑋 ∈ Θ𝑛 by Proposition 9.

Recall that the localization functor 𝐿𝑛 is smashing, and this im-
plies that Pic0 (L𝑛) is closed under the ordinarily smash product.
By Proposition 8, Θ𝑛 is also closed under ordinarily smash prod-
uct. Therefore, if Θ𝑛 is a set, then the inclusion Pic0 (L𝑛) ⊂ Θ𝑛

is a monomorphism of groups. �

Proof of Theorem 3. We know that the 0-th Johnson-Wilson
spectrum 𝐸 (0) is the rational Eilenberg-Mac Lane spectrum,
particularly, 𝐿0𝑆

0 = 𝐸 (0). If 𝑋 belongs to Θ0, then there ex-
ists a quasi 𝐸 (0)-equivalence 𝑆0 → 𝐸 (0) ∧ 𝑋 . In particular,
𝐸 (0) = 𝐸 (0) ∧ 𝑆0 = 𝐸 (0) ∧ 𝑋 . This implies that

(11) 𝑋 = 𝐿0𝑋 = 𝑋 ∧ 𝐿0𝑆
0 = 𝑋 ∧ 𝐸 (0) = 𝐸 (0) = 𝐿0𝑆

0,

and therefore Θ0 = {𝐿0𝑆
0}. �

Remark 12 The isomorphism (11) exists even if there exists an
𝐸 (0)-equivalence 𝑓 : 𝑆0 → 𝑋 , that is, 𝐸 (0)∧𝑓 is an isomorphism.
Therefore, we have

Θ𝐸 ⊂
{
𝑋 ∈ L0 : 𝑋 is 𝐸 (0)-equivalent to 𝑆0} /' = {𝐿0𝑆

0}.

We expect that the condition 𝑋 ∈ Θ𝑛 implies more interesting
facts.
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