中山 享・相原 恵・秋月 祐璃・馬越 千晶・辻 久巳・塩見 正樹・朝日 太郎

Tl₂O₃酸化触媒による低温炭素燃焼

Low Temperature Carbon Combustion with Tl₂O₃ Oxidation Catalyst

Susumu NAKAYAMA* Megumi AIBARA* Yuri AKIDUKI* Chiaki UMAKOSHI*

Hisami TSUJI** Masaki SHIOMI** Taro ASAHI***

The carbon oxidation temperature was found to be extremely lowered to ca. 300 °C in the coexistence of Tl₂O₃, whereas the temperature was ca. 660 °C in the absence of Tl₂O₃. The carbon combustion mechanism of Tl₂O₃ is as follows. Active oxygen is supplied while Tl₂O₃ itself changes to Tl₂O, and carbon is changed to carbon monoxide. The carbon monoxide reacts quickly with oxygen around it to become carbon dioxide. The produced Tl₂O quickly returns to stable Tl₂O₃ in the presence of oxygen above 200 °C.

1. 緒 言

中国における一次エネルギー供給の70%以上が現在も石炭 であり、その石炭を大量に消費する製鉄所や火力発電所が発 生源である炭素が主成分のPM2.5による環境汚染が、日本を 含む近隣国まで巻き込んで大きな社会問題になっている。 PM2.5除去対策技術としては、フィルター手法や電気的手法 などがあるが、一定時間ごとにクリーニングが必要やシステ ムが複雑であるなど解決すべき大きな課題を抱えている。一 方、ディーゼルエンジンは高いエネルギー効率および二酸化 炭素排出量の抑制などの優れた点があるが、そのディーゼル エンジンから排出される同じく炭素が主成分の粒子状物質で ある DPM を除去する技術開発が望まれている。ディーゼル 車の排ガス中の DPM 対策の1つとして「フィルターによる DPM の捕集と除去」があり、酸化触媒方式が一般的に用いら れている。その酸化触媒としては、イットリウムマンガネー トなどセラミックス材料が使われている。これまでに、筆者

らは DPM をより低温で酸化させて除去することができる炭 素燃焼触媒材料の探索を目的として研究を行ってきた。さら に、このディーゼル車の排ガス中の DPM 対策技術を、製鉄 所や火力発電所が発生源であるPM2.5の除去対策技術への応 用の検討も最近行っている。これら DPM および PM2.5 をよ り低温で燃焼させることができる炭素燃焼触媒の探索を目的 とした過去実験で得られた結果としては、以下がある。例え ば、示差走査熱量分析 (DSC) 測定において炭素のみの燃焼 温度は 665℃になるが、酸化銅と炭素の混合物では炭素燃焼 温度は 500℃付近まで下がる[1]。また、希土類との複合酸化 物ではさらに 50℃ほど下がることも報告している^[2]。特に、 イットリウム-マンガネートでは DSC の発熱ピークが 430℃付近に観測され、良好な炭素燃焼特性が認められた^[3]。 さらに、安定な酸化物で1酸素原子当たりの標準生成エンタ ルピーが-131 kJ·mol⁻¹ と比較的大きな酸化タリウム(III) (Tl2O3)に注目して、その炭素燃焼特性について調べたとこ ろ、Tl₂O₃が上記と同様の DSC 測定において 300℃以下で

令和元年 12 月 23 日受付 (Received Dec 23, 2019)

*新居浜工業高等専門学校生物応用化学科 (Department of Applied Chemistry and Biotechnology, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580, Japan)

**新居浜工業高等専門学校エンジニアリングデザイン教育センター (Center for Engineering Design Education, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580, Japan

***新居浜工業高等専門学校数理科(Faculty of Fundamental Science, National Institute of Technology (KOSEN), Niihama College, Niihama, 792-8580, Japan)

炭素燃焼が可能であることを最近発見した^[4]。(※ $TI^{II}_2O_3$ は、 $TI^{I}_2SO_4$ や $TI^{I}NO_3$ など異なり毒劇物ではない。)

本研究では、その 300℃以下での Tl₂O₃ の炭素燃焼メカニ ズムを調べた。

2. 実験

2-1 試料

純度 99.9%の酸化タリウム(III)Tl₂O₃粉末(㈱高純度化学研 究所)および純度 98%の酸化タリウム(I)Tl₂O粉末(㈱高純 度化学研究所)を、試料として用いた。

2-2 各種測定

各試料粉末は、X 線回折装置 (XRD: リガク、MiniFlex II) により、CuKα₁線を用いて 2θ=20~70 °の範囲で室温にて測 定した。

各試料粉末に対し、2 wt%の炭素/カーボンブラック(東 海カーボン㈱、トーカブラック#8500/F、平均粒子径:14 nm、 N2吸着比表面積:290 m²·g⁻¹)を添加してメノウ乳鉢で1~2 分 間十分に混合した後、白金パンに 10mg 詰め、20 mL・min⁻¹ の Air 気流中にて昇温速度 10 ℃・min⁻¹で示差走査熱量分析 (DSC:リガク、DSC8230) および熱重量示差熱分析(TG-DTA:リガク、TG8120)を行った。

3. 結果及び考察

3-1 Tl₂O₃の炭素燃焼特性

Tl₂O₃粉末に 5 wt%の炭素を混合した後、DSC 測定を行った結果を Fig.1 に示す。300℃付近で炭素燃焼に伴う非常にシャープな発熱ピークが観測される。炭素のみの燃焼時の発熱 ピーク温度より 360℃低くなり、Tl₂O₃が優れた炭素燃焼特性 を示すことがわかる。

Fig.1 5 wt% カーボンブラック+ Tl₂O₃ 混合物及びカーボン ブラックのみの DSC 結果.

Tl₂O₃粉末に5 wt%の炭素を混合した後、白金パンに 10mg 詰めてホットプレート上で昇温を行ったところ、280℃付近 で Fig.2 の写真のように爆発的な炭素燃焼が観察される。この爆発的な炭素燃焼に伴う測定装置へのダメージがあることがわかったため、精密な天秤による TG-DTA 測定は炭素 混合量を 2 wt%に減らして行った。

Fig.2 5 wt% カーボンブラック+ Tl₂O₃ 混合物の爆発的な炭 素燃焼.

Fig.3から分かるように、先ほどの5wt%の炭素を混合した 場合とは異なり、比較的穏やかな炭素燃焼に伴う DTA 発熱 ピークが観測され、TG 重量減少は混合している炭素量に一 致する。

Fig.3 (a) 2 wt% カーボンブラック+ Tl₂O₃ 混合物及び(b) カ ーボンブラックのみの TG-DTA 結果.

3-2 Tl₂O₃の炭素燃焼後の状態

Tl₂O₃の炭素燃焼メカニズムを調べるために、Tl₂O₃粉末に

5 wt%の炭素を混合した後、その混合物を釉薬付磁性皿上に 置きホットプレート上で昇温を行い、Fig.2 のような爆発的な 炭素燃焼を起こさせた。炭素燃焼後の Tl₂O₃ 粉末は、ほとん ど釉薬付磁性皿上に残っていないが、釉薬付磁性皿との反応 層(茶色)が表面に若干見られるため、その釉薬付磁性皿の 表面の XRD 測定を行った。その結果を、Fig.4 に示す。釉薬 付磁性皿表面の反応層には、Tl₂O₃ に帰属される XRD ピーク の他に、わずかであるが Tl₂O に帰属される XRD ピークが観 測される。

Fig.4 釉薬付磁性皿の表面 XRD 結果. (a) 5 wt% カーボンブ
ラック+ Tl₂O₃ 混合物を 300℃処理した後、(b) さらに大気中
300℃で処理した後、(c) 未使用の磁性皿.

3-3 Tl₂Oの熱的挙動

Tl₂O の熱的挙動を調べるため、Air 気流中にて Tl₂O 粉末の み TG-DTA 測定を行ってみた。その結果を、Fig.5 に示す。 Tl₂O のみの場合、Fig.5 からわかるように、200℃付近で重量 増加を伴う発熱反応が観測される。その重量の増加分から、 Tl₂O が測定雰囲気中の酸素と反応し、酸化されて Tl₂O₃に変 化したと推測される。

それを確認するため、Tl₂O 粉末を白金ルツボ中にて TG-DTA 測定と同じ昇温条件で 200℃まで熱処理したもの(200℃ 熱処理品)と未熱処理品の Tl₂O 粉末の XRD 結果を、Fig.6 に 示す。未熱処理品の Tl₂O 粉末は、同定不能の不純物層を含む ことがわかる。一方、200℃熱処理品は、その XRD 結果から まったく不純物相を含まない Tl₂O₃ 単相になっていることが わかる。

Fig.6 Tl₂O および 200℃熱処理した後の XRD 結果.

これらの結果から、Tl₂O は酸素が存在する雰囲気中では周りに酸素と反応し、酸化されて Tl₂O₃ に変化することが明らかである。

次に、Air 気流中にて Tl₂O 粉末に 2 wt%の炭素を混合した 後の TG-DTA 測定を行ってみた。その結果を、Fig.7 に示す。 Fig.5 と同様に、まず Tl₂O は 200℃付近で測定雰囲気中の酸 素と反応し、酸化されて Tl₂O₃ に変化する。その後、昇温を 続けると、300℃付近で重量減少を伴う発熱反応が観測され る。その重量の減少分から Tl₂O₃ によって炭素が燃焼された ものと推測できる。

Fig.7 2 wt% カーボンブラック+ Tl₂O 混合物の TG-DTA 結果.

以上のことから、Tl₂O₃の炭素燃焼メカニズムは次のよう に考えられる。Tl₂O₃は炭素燃焼の酸化触媒と働くとき、Tl₂O₃ 自体はTl₂O に変化しながら活性酸素(O)を供給し、炭素(C) を一酸化炭素(CO)に変化させ、その生成した CO は速やか に周りに酸素と反応して二酸化炭素(CO₂)になる。また、 生成した Tl₂O も 200℃以上の酸素存在下では速やかに安定 な Tl₂O₃になるため、300℃付近での炭素燃焼で生成した Tl₂O は直ちに Tl₂O₃に変化し、酸化触媒 Tl₂O₃は常に一定量存在 することになる。

4. 結 言

 Tl_2O_3 が共存しない場合の炭素酸化温度は約 660℃であるのに対して、 Tl_2O_3 が共存する場合には炭素酸化温度を約 300℃まで極端に下げられる。その Tl_2O_3 の炭素燃焼メカニズムは、 Tl_2O_3 自体が Tl_2O に変化しながら活性酸素を供給し、炭素を一酸化炭素に変化させ、その生成した一酸化炭素は速やかに周りに酸素と反応して二酸化炭素になり、炭素は除去される。また、生成した Tl_2O は 200℃以上の酸素存在下では速やかに安定な Tl_2O_3 に戻る。

参考文献

 S. Nakayama, S. Kondo, T. Naka, M. Sakamoto, "Carbon oxidation activity of complex oxides (Part 1) RE₂CuO4 (RE=La-Gd) and RE₂Cu₂O₅ (RE=Dy-Yb, Y)", *J. Ceram. Soc. Jpn.*, **119**, 961-964 (2011).

- [2] S. Nakayama, R. Tokunaga, M. Shiomi, T. Naka, "Carbon oxidation activity of complex oxides (Part 2) Characteristics of La_{0.9}Ag_{0.1}FeO_α synthesized at low temperature using coprecipitation method", *J. Ceram. Soc. Jpn.*, **121**, 95-99 (2013).
- [3] S. Nakayama, S. Kondo, R. Tokunaga, C. Tsutsumi, T. Miyata, K. Tanaami, Y. Isogai, T. Naka, "Carbon oxidation characteristics of yttrium manganate catalyst prepared via urea decomposition", *Ceram. Inter.*, 43, 8538-8542 (2017).
- [4] S. Nakayama, M. Sakamoto, "High oxidation activity of thallium oxide for carbon combustion", *Thermochim. Acta*, 647, 81-85 (2017).