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A Note on the Multiplicative Structure of Ring Spectra

Ryo KATO∗

For investigating a spectrum R, we have an important problem whether or not the spectrum R has a multiplicative

structure. The purpose of this note is to find a general condition whereby a left unital ring spectrum admits a

two-sided, commutative, and associative multiplication.

1 Introduction

Throughout this note, for a spectrum X, we denote by

1X the identity map of X.

Definition 1.1. A spectrum R is a left unital ring spec-

trum if R admits ι : S0 → R and µ : R∧R → R satisfying

µ(ι ∧ 1R) = 1R.

These maps ι and µ are called the unit map and the

multiplication, respectively.

Definition 1.2. Let R be a left unital ring spectrum with

a unit map ι and a multiplication µ.

(i) The pair (ι, µ) is two-sided unital if µ(1R∧ι) = 1R.

(ii) The pair (ι, µ) is commutative if µT = µ. Here T

is the switching map R ∧R → R ∧R.

(iii) The pair (ι, µ) is associative if µ(1R ∧ µ) = µ(µ ∧
1R).

Hereafter we consider a left unital ring spectrum R with

(1.3) ι : S0 → R and µ0 : R ∧R → R.

For the unit map ι, we consider a cofiber sequence

(1.4) S0 ι−→ R
κ−→ C

λ−→ S1.

We define

(1.5) Ξ0 = {ξ0 ∈ [C,R] : ξ0κ = 1R − µ0(1R ∧ ι)} .

Hereafter, for spectra X and Y , [X,Y ]n denotes the group

of maps from ΣnX to Y . Beisdes [X,Y ] denotes [X,Y ]0.

Theorem 1.6. There exists µ1 : R ∧R → R such that the

pair (ι, µ1) is a two-sided unital ring spectrum structure if

and only if ξ0(1C ∧ λ) = 0 for some ξ0 ∈ Ξ0.

Suppose that R admits a two-sided unital multiplication

µ1. It is easy to see that, if [R ∧R,R] is 2-divisible, then

(1.7) µ2 =
1

2
(µ1 + µ1T )
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gives two-sided unital and commutative ring spectrum

structure (ι, µ2) to R.

On the other hand, for the problem whether or not the

pair (ι, µ1) is associative, we have the following result.

Theorem 1.8. For the two-sided unital ring spectrum

structure (ι, µ1), the associator is

α(µ1)(κ ∧ κ ∧ 1R),

where α(µ1) is in (2.3). Furthermore, the multiplication

µ1 is associative if and only if α(µ1) = 0.

As an easy application, we apply these results to the

cofiber of a generator in the homotopy groups of the sphere

spectrum as follow:

Corollary 1.9. Let p be a prime number, and f be an

essential element in the homotopy group πn(S
0) of the p-

local sphere spectrum. For a cofiber W of f , the following

hold:

(i) If π2n+1(W ) = 0, then W has a two-sided unital ring

spectrum structure.

(ii) In addition, if p > 2, then W has a two-sided unital,

and commutative ring spectrum structure.

In the last section, as typical examples, we investigate

the ring spectrum structure of

• The mod p Moore spectrum, and

• The cofiber of the generator β1 in the homotopy

group π∗(S
0), which is the first nontrivial element

in the cokernel of J .
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2 Proof of Theorem 1.6 and Theorem 1.8

Lemma 2.1. For a cofiber sequence

X
f−→ Y

g−→ Z
h−→ ΣX,

if f has a retraction r : Y → X, then there exists a unique

map r̂ : Z → Y such that

(i) gr̂ = 1Z ,

(ii) fr + r̂g = 1Y , and

(iii) rr̂ = 0.

Proof. Since r is a retraction of f , for the cofiber sequence

in the statement, we have (1Y − fr)f = 0. This implies

that there exists r̂ : Z → Y such that

1Y − fr = r̂g.

Besides (gr̂ − 1Z)g = g(1Y − fr) − g = 0, and so we have

a map t : ΣX → Z such that th = gr̂ − 1Z . Therefore,

gr̂ − 1Z = th = trfh = 0,

and

rr̂ = rfrr̂ = r(1Y − r̂g)r̂ = rr̂(1Z − gr̂) = 0.

If there exists a map r̂′ such that gr̂′ = 1Z , fr+r̂′g = 1Y ,

and rr̂′ = 0, then

r̂′ = r̂′gr̂ = (1Y − fr)r̂ = r̂.

Therefore, the uniqueness of r̂ is shown.

Proof of Theorem 1.6. First we consider a cofiber sequence

(2.2) R
ι∧1R−−−→ R ∧R

κ∧1R−−−→ C ∧R
λ∧1R−−−→ ΣR.

We note that the map µ0 is a retraction of ι ∧ 1R. By

Lemma 2.1, we have a map µ̂0 : C ∧R → R ∧R such that

• (κ ∧ 1R)µ̂0 = 1C∧R,

• (ι ∧ 1R)µ0 + µ̂0(κ ∧ 1R) = 1R∧R, and

• µ0µ̂0 = 0.

Suppose that there exists µ1 in the statement, then

µ1µ̂0(1C ∧ ι)κ = µ1µ̂0(κ ∧ 1R)(1R ∧ ι)
= µ1 (1R∧R − (ι ∧ 1R)µ0) (1R ∧ ι)
= µ1(1R ∧ ι)− µ1(ι ∧ 1R)µ0(1R ∧ ι)
= 1R − µ0(1R ∧ ι).

This implies that ξ0 = µ1µ̂0(1C ∧ ι) is in Ξ0, and

ξ0(1C ∧ λ) = 0.

Conversely, we suppose that there exists ξ0 ∈ Ξ0 in the

statement, and cosider a cofiber sequence

C
1C∧ι−−−→ C ∧R

1C∧κ−−−→ C ∧ C
1C∧λ−−−→ ΣC.

Since ξ0(1C ∧ λ) = 0, there exists a map ξ1 : ΣC ∧R → R

such that
ξ1(1C ∧ ι) = ξ0.

We define
µ1 = µ0 + ξ1(κ ∧ 1R),

then

µ1(ι ∧ 1R) = (µ0 + ξ1(κ ∧ 1R)) (ι ∧ 1R)
= µ0(ι ∧ 1R)
= 1R,

and

µ1(1R ∧ ι) = (µ0 + ξ1(κ ∧ 1R)) (1R ∧ ι)
= µ0(1R ∧ ι) + ξ1(κ ∧ 1R)(1R ∧ ι)
= µ0(1R ∧ ι) + ξ1(1C ∧ ι)κ
= 1R − ξ0κ+ ξ0κ (by ξ0 ∈ Ξ0)
= 1R.

Therefore, the pair (ι, µ1) is a two-sided unital ring spec-

trum structure on R.

Next turn to Theorem 1.8. For a left unital multiplica-

tion µ : R ∧R → R, we define

(2.3) α(µ) = µ(1R ∧ µ)(µ̂ ∧ 1R)(1C ∧ µ̂).

Proof of Theorem 1.8. For a two-sided unital multiplica-

tion µ1, we have

µ1(1R ∧ µ1)(µ̂1 ∧ 1R)(κ ∧ 1R∧R)
= µ1(1R ∧ µ1) (1R∧R∧R − (ι ∧ 1R∧R)(µ1 ∧ 1R))
= µ1(1R ∧ µ1)− µ1(µ1 ∧ 1R),

and

µ1(1R ∧ µ1)(µ̂1 ∧ 1R)(1C ∧ ι ∧ 1R)(1C ∧ µ1)(κ ∧ 1R∧R)
= µ1(1R ∧ µ1)(µ̂1 ∧ 1R)(κ ∧ 1R∧R)(1R ∧ ι ∧ 1R)(1R ∧ µ1)
= µ1(1R ∧ µ1)(1R ∧ ι ∧ 1R)(1R ∧ µ1)

−µ1(1R ∧ µ1)(ι ∧ 1R∧R)(µ1 ∧ 1R)(1R ∧ ι ∧ 1R)(1R ∧ µ1)
= µ1(1R ∧ µ1)− µ1(1R ∧ µ1)
= 0.

From these, the calculation

α(µ1)(κ ∧ κ ∧ 1R)
= µ1(1R ∧ µ1)(µ̂1 ∧ 1R)(1C ∧ µ̂1)(1C ∧ κ ∧ 1R)(κ ∧ 1R∧R)
= µ1(1R ∧ µ1)(µ̂1 ∧ 1R)(κ ∧ 1R∧R)

−µ1(1R ∧ µ1)(µ̂1 ∧ 1R)(1C ∧ ι ∧ 1R)(1C ∧ µ1)(κ ∧ 1R∧R)
= µ1(1R ∧ µ1)− µ1(µ1 ∧ 1R).

follows. Therefore, if α(µ1) = 0, then µ1 is associative.

Conversely, if µ1 is associative, then

α(µ1) = (µ1(1R ∧ µ1)− µ1(µ1 ∧ 1R)) (µ̂1 ∧ 1R)(1C ∧ µ̂1)

implies α(µ1) = 0.



加藤 諒 43

3 Application

Let p be a prime number. We take a nonzero element f

in the n-th homotopy group πn(S
0) of the p-local sphere

spectrum, and consider a cofiber sequence

(3.1) Sn f−→ S0 i−→ W
j−→ Sn+1.

Lemma 3.2. There exists a map µ0 : W ∧W → W such

that the pair (i, µ0) is a left unital ring spectrum structure

on W if and only if f ∧ 1W : ΣnW → W is trivial.

Proof. If the map f ∧1W : ΣnW → W is trivial, then there

exists a retraction µ0 of i ∧ 1W . Therefore (i, µ0) is a left

unital ring spectrum structure on W .

Conversely, if (i, µ0) is left unital, then µ0(i∧1W ) = 1W .

This implies f ∧ 1W = µ0(i ∧ 1W )(f ∧ 1W ) = 0.

Proof of Corollary 1.9. Consider an exact sequence

π2n+1(W )
j∗−→ [W,W ]n

i∗−→ πn(W ).

Since π2n+1(W ) = 0, the induced map i∗ is a monomor-

phism. We also have i∗(f ∧ 1W ) = (f ∧ 1W )i = if = 0,

and so the map f ∧ 1W is trivial. This implies that, by

Lemma 3.2, the cofiber W has a left unital ring spectrum

structure. Remark that, in this case, the set Ξ0 in (1.5) is

of the form

Ξ0 = {ξ0 ∈ πn+1(W ) : ξ0j = 1W − µ0(1W ∧ i)} .

Since π2n+1(W ) = 0, we have ξ0f = 0 for any ξ0 ∈ Ξ0.

Therefore, by Theorem 1.6, the cofiber W admits a two-

sided unital ring spectrum structure (i, µ1). Furthermore,

if p > 2, then the group [W ∧W,W ] is 2-divisible, and it

follows that W admits a two-sided and commutative mul-

tiplication µ2 from (1.7).

4 Examples

4.1 The mod p Moore spectrum

Let p be an odd prime number. The mod p Moore spec-

trum M(p) is defined by the cofiber sequence

S0 p−→ S0 i−→ M(p)
j−→ S1.

Recall that π0(S
0) = Z(p), πk(S

0) = 0 for k ∈ {1, 2}, and

π3(S
0) =

{
Z/3{α1} p = 3,

0 p > 3.

Therefore, by Corollary 1.9, the spectrum M(p) admits a

two-sided unital, and commutative ring spectrum structure

(i, µ2). We also note that [M(p),M(p)] = Z/p{1M(p)}. By

Theorem 1.8, the multiplication µ2 is associative if and

only if α(µ2) ∈ [M(p),M(p)]2 is trivial. Since

[M(p),M(p)]2 =

{
Z/3{iα1j} p = 3,

0 p > 3,

we have the following:

• If p > 3, then the mod p Moore spectrum M(p) is a

two-sided unital, commutative, and associative ring

spectrum.

• The mod 3 Moore spectrum M(3) admits a two-

sided unital, and commutative ring spectrum struc-

ture (i, µ2). The associator of µ2 is of the form

x · iα1(j ∧ j ∧ j) with x ∈ Z/3.

Indeed, by [4, Lemma 6.2], we know that M(3) has

no associative multiplication, and the associator is

±iα1(j ∧ j ∧ j).

Remark 4.1. In [1], Oka studied the ring spectrum struc-

ture of the mod k Moore spectrum for an even integer k.

4.2 The cofiber of β1

Let p > 2 and q = 2(p− 1). We consider β1 ∈ πpq−2(S
0)

and the cofiber sequence

Spq−2 β1−→ S0 iW−−→ W
jW−−→ Spq−1.

This induces an exact sequence

π2pq−3(S
0)

(iW )∗−−−−→ π2pq−3(W )
(jW )∗−−−−→ πpq−2(S

0)
(β1)∗−−−→ π2pq−4(S

0).

Recall that, by [3] and [2], we have
(4.2)

πk(S
0) =


Z/p2{αp/2} k = pq − 1,

Z/p{β1} k = pq − 2,

0 k = 2pq − 3, 2pq − 2, 3pq − 4, 3pq − 3,

and β2
1 ̸= 0. They imply π2pq−3(W ) = 0, and so, by Corol-

lary 1.9, the cofiber W admits a two-sided unital, and com-

mutative ring spectrum structure (i, µ2). By Theorem 1.8,

for the associativity of µ2, it suffices to investigate

α(µ2) ∈ [W,W ]2pq−2.

Consider the following two exact sequences:

π3pq−3(W )
(jW )∗−−−−→ [W,W ]2pq−2
(iW )∗−−−−→ π2pq−2(W )

(β1)
∗

−−−→ π3pq−4(W ),

and

πk(S
0)

(iW )∗−−−−→ πk(W )
(jW )∗−−−−→ πk−pq+1(S

0).
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By these sequences and (4.2),

[W,W ]2pq−2 = Z/p2{α̃p/2} with jW α̃p/2iW = αp/2,

and α(µ2) = x · α̃p/2 with x ∈ Z/p2. By Theorem 1.8, the

associator of µ2 is

x · α̃p/2(jW ∧ jW ∧ 1W ) with x ∈ Z/p2.
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