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A Note on the Multiplicative Structure of Ring Spectra

Ryo KATO*

For investigating a spectrum R, we have an important problem whether or not the spectrum R has a multiplicative

structure. The purpose of this note is to find a general

two-sided, commutative, and associative multiplication.

1

Introduction

Throughout this note, for a spectrum X, we denote by
1x the identity map of X.

Definition 1.1. A spectrum R is a left unital ring spec-
trum if R admits ¢: S° — R and p: RA R — R satisfying
w(t A1) = 1g.

These maps ¢ and p are called the unit map and the

multiplication, respectively.

Definition 1.2. Let R be a left unital ring spectrum with

a unit map ¢ and a multiplication pu.

(i) The pair (¢, ) is two-sided unital if u(1gAL) = 1g.
(ii) The pair (¢, 1) is commutative if uT = p. Here T
is the switching map RA R — RA R.
(iii) The pair (¢, 1) is associative if p(1gr A p) = p(p A
1R).

Hereafter we consider a left unital ring spectrum R with
(1.3) 1:8° - Rand uy: RAR— R.

For the unit map ¢, we consider a cofiber sequence

(1.4) SO 4L RE O S
We define
(1.5) E():{fo S [C,R] foﬁle—uo(lRAL)}.

Hereafter, for spectra X and Y, [X,Y],, denotes the group
of maps from X" X to Y. Beisdes [X,Y] denotes [X,Y]p.

Theorem 1.6. There exists pu1: RA R — R such that the
pair (, p1) s a two-sided unital ring spectrum structure if

and only if £o(1c A X) =0 for some & € Zy.

Suppose that R admits a two-sided unital multiplication

u1. It is easy to see that, if [R A R, R] is 2-divisible, then
1
(L.7) p2 = 5+ mT)

condition whereby a left unital ring spectrum admits a

gives two-sided unital and commutative ring spectrum
structure (¢, p2) to R.
On the other hand, for the problem whether or not the

pair (¢, 1) is associative, we have the following result.

Theorem 1.8. For the two-sided unital ring spectrum

structure (i, 11), the associator is

alu)(kANKA1R),

where a(py) s in (2.8). Furthermore, the multiplication

w1 is associative if and only if a(p1) = 0.

As an easy application, we apply these results to the
cofiber of a generator in the homotopy groups of the sphere

spectrum as follow:

Corollary 1.9. Let p be a prime number, and [ be an
essential element in the homotopy group m,(S°) of the p-
local sphere spectrum. For a cofiber W of f, the following
hold:

(i) If map11(W) =0, then W has a two-sided unital ring
spectrum structure.
(ii) In addition, if p > 2, then W has a two-sided unital,

and commutative ring spectrum structure.

In the last section, as typical examples, we investigate

the ring spectrum structure of

e The mod p Moore spectrum, and
e The cofiber of the generator 5y in the homotopy
group 7,(S°), which is the first nontrivial element

in the cokernel of J.
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2 Proof of Theorem 1.6 and Theorem 1.8
Lemma 2.1. For a cofiber sequence
x Ly % zhyx,

if f has a retraction r: Y — X, then there exists a unique

map T: Z — 'Y such that

(i) gr =1z,
(ii) fr+7g=1y, and
(1) 7 = 0.

Proof. Since r is a retraction of f, for the cofiber sequence
in the statement, we have (1y — fr)f = 0. This implies

that there exists 7: Z — Y such that

ly — fr=ryg.
Besides (g7 — 1z)g = g(1y — fr) — g = 0, and so we have
amap t: X — Z such that th = g7 — 1. Therefore,
gr—1z=th=trfh =0,
and
rm=rfrr=r(ly —rg)r =rr(lz —gr) =0.

If there exists a map 7’ such that g7’ = 1z, fr+7'g = 1y,

and 777 = 0, then

=

=7gr=(y — fr)ir =7
Therefore, the uniqueness of 7 is shown. O
Proof of Theorem 1.6. First we consider a cofiber sequence

(22) R L% RAR S oaR 2B yR,

We note that the map pg is a retraction of ¢ A 1g. By
Lemma 2.1, we have a map fip: C A R — R A R such that

o (kA 1g)jio = lear,
e (LA1R)po + tio(k A 1R) = 1rar, and
e Lol = 0.

Suppose that there exists p1 in the statement, then

pafio(k A1R)(1R A L)

w1 (Lrar — (e A1R)po) (1r At)
p(lr Ae) = pi(e ALR)po(1r At)
= 1rp— NO(lR A L).

mpo(le Nk =

This implies that & = pifio(le A¢) is in Eg, and
So(le AX) =0.

Conversely, we suppose that there exists £y € g in the

statement, and cosider a cofiber sequence

C el oaR LM oo LM s

Since (1o A A) = 0, there exists a map &: XSCAR — R

such that
&1(le A ) = &.

We define

w1 = po +&1(k A LR),
then
pi(tA1R) = (po+&(kALR)) (LA LR)

= ,u()(L A\ IR)
= 1R7

and

m(r Ay = (po+&(KALR)) (IR A L)

po(lr At) + &1k A1R)(IR A )
wo(lr Ae) + & (1o Ak

1r — &k +&or (by &o € Zo)
15

Therefore, the pair (¢, 1) is a two-sided unital ring spec-

trum structure on R. O

Next turn to Theorem 1.8. For a left unital multiplica-

tion p: RA R — R, we define

(2.3) afp) = plr Ap)EALR) (1o AR).

Proof of Theorem 1.8. For a two-sided unital multiplica-
tion pi, we have
p1(1r A pa)(fin A1R)(K A 1RAR)

,ul(lR A /J,l) (1RAR/\R - (L A 1RAR)(N1 A 1R))
pi(lr A pa) = pa(pa Alg),

and

p1(lr Apn) (B Alr)(Ie AeALR)(Ie A pa)(K A LRaR)
p(Lr A pa) (i ALR)(E A TRAR) (LR AL ALTR) (1R A 1)
i (Lr Ap1)(Lr AL ALR) (1R A i)

—pr(Lr A pr) (e ALRaR) (0 A1R) (AR AL ALR) (1R A 1)
= m(rAp1) —p1(1r A )

= 0.

From these, the calculation

a(p)(kANKALR)

pi(lr A pa) (i ALR)(Le A )(Le A K A LR)(K A 1RAR)
p1(1r A pa)(fin ALR)(K A 1RAR)

—pr(1r A pa)(1ir ALR)(Le A e A LR) (Lo A pa) (K A LRAR)
= p1(Lr A p1) — pr(pr A Lg).

follows. Therefore, if a(u) = 0, then p; is associative.

Conversely, if 1 is associative, then
a(p) = (mQrAp) = p(p AR)) (i Alr) (1o Afin)

implies a(p1) = 0. O
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3 Application

Let p be a prime number. We take a nonzero element f
in the n-th homotopy group 7, (S°) of the p-local sphere

spectrum, and consider a cofiber sequence
(3.1) st Los0 L ow Ly gnt

Lemma 3.2. There exists a map po: W AW — W such
that the pair (i, o) is a left unital ring spectrum structure

on W if and only if f A1y : X"W — W s trivial.

Proof. If the map fAly : X"W — W is trivial, then there
exists a retraction ug of ¢ A 1y. Therefore (i, uo) is a left
unital ring spectrum structure on W.

Conversely, if (4, po) is left unital, then po(i Aly) = 1y .
This implies f A 1w = po(i A 1w )(f Alw) = 0. O

Proof of Corollary 1.9. Consider an exact sequence
Tons1 (W) Lo [W, W], S m(W).

Since map4+1(W) = 0, the induced map ¢* is a monomor-
phism. We also have *(f A lw) = (f Alw)i = if =0,
and so the map f A 1y is trivial. This implies that, by
Lemma 3.2, the cofiber W has a left unital ring spectrum
structure. Remark that, in this case, the set = in (1.5) is

of the form
EO = {50 (S 7Tn+1(W): fo] =1lw — /Lo(lw A Z)} .

Since man4+1(W) = 0, we have & f = 0 for any & € Zo.
Therefore, by Theorem 1.6, the cofiber W admits a two-
sided unital ring spectrum structure (4, yt1). Furthermore,
if p > 2, then the group [W A W, W] is 2-divisible, and it
follows that W admits a two-sided and commutative mul-

tiplication pg from (1.7). O
4 Examples

4.1 The mod p Moore spectrum

Let p be an odd prime number. The mod p Moore spec-
trum M (p) is defined by the cofiber sequence

Recall that m(S°) = Z,), m(5°) = 0 for k € {1,2}, and

Z/3 =3,
71.3(30) _ { / {al} p
0 p>3.
Therefore, by Corollary 1.9, the spectrum M (p) admits a
two-sided unital, and commutative ring spectrum structure

(i, u2). We also note that [M(p), M (p)] = Z/p{1nm)}- By

Theorem 1.8, the multiplication ps is associative if and
only if a(us2) € [M(p), M (p)]2 is trivial. Since

Z/3{ianj} p=3,
0 p > 3,

[M(p), M(p))2 = {

we have the following:

e If p > 3, then the mod p Moore spectrum M (p) is a
two-sided unital, commutative, and associative ring
spectrum.

e The mod 3 Moore spectrum M (3) admits a two-
sided unital, and commutative ring spectrum struc-

ture (i, o). The associator of pg is of the form
x-dar(J A JAJ) with x € Z/3.
Indeed, by [4, Lemma 6.2], we know that M (3) has

no associative multiplication, and the associator is

+iay (JAJAG).

Remark 4.1. In [1], Oka studied the ring spectrum struc-

ture of the mod & Moore spectrum for an even integer k.

4.2 The cofiber of 5;

Let p> 2 and ¢ = 2(p— 1). We consider 31 € mpy_2(S°)
and the cofiber sequence

§PaI—2 5_1> g0 iw w 2w, gpa-1
This induces an exact sequence

(iw )*

Tapg—3(S°) — Topg—3(W)
(Jw )« 7r17(172(50) (B1)x 7r2pq74(50)‘

Recall that, by [3] and [2], we have

(4.2)
Z/p* oy} k=pg—1,

m™(S%) = Z/p{B1}  k=pq-2,
0 k = 2pq — 3,2pq — 2,3pq — 4, 3pq — 3,

and 8?2 # 0. They imply mapq—3(W) = 0, and so, by Corol-
lary 1.9, the cofiber W admits a two-sided unital, and com-
mutative ring spectrum structure (7, o). By Theorem 1.8,

for the associativity of uso, it suffices to investigate
Oé(,LLQ) € [VV» W]2pq—2-

Consider the following two exact sequences:

Tapg—3(W) % (W, Wlapg—2
) 81)*
% Topg—2(W) (L) Tapg—a(W),
and

mu(80) Wy ) I (S9).
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By these sequences and (4.2),
[VV, W]qu_g = Z/pz{&p/g} with jwap/ziw = Qyp/2,

and a(pz) = x - &) with o € Z/p?. By Theorem 1.8, the

associator of pso is

T Gpso(jw Ajw A lw) with @ € Z/p?.
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