A Note on the Multiplicative Structure of Ring Spectra

Ryo KATO *

For investigating a spectrum R, we have an important problem whether or not the spectrum R has a multiplicative structure. The purpose of this note is to find a general condition whereby a left unital ring spectrum admits a two-sided, commutative, and associative multiplication.

1 Introduction

Throughout this note, for a spectrum X, we denote by 1_X the identity map of X.

Definition 1.1. A spectrum R is a **left unital ring spectrum** if R admits $\iota: S^0 \to R$ and $\mu: R \land R \to R$ satisfying

$$\mu(\iota \wedge 1_R) = 1_R$$

These maps ι and μ are called the **unit map** and the **multiplication**, respectively.

Definition 1.2. Let *R* be a left unital ring spectrum with a unit map ι and a multiplication μ .

- (i) The pair (ι, μ) is **two-sided unital** if $\mu(1_R \wedge \iota) = 1_R$.
- (ii) The pair (ι, μ) is **commutative** if $\mu T = \mu$. Here T is the switching map $R \wedge R \to R \wedge R$.
- (iii) The pair (ι, μ) is associative if $\mu(1_R \wedge \mu) = \mu(\mu \wedge 1_R)$.

Hereafter we consider a left unital ring spectrum ${\cal R}$ with

(1.3)
$$\iota: S^0 \to R \text{ and } \mu_0: R \land R \to R$$

For the unit map ι , we consider a cofiber sequence

(1.4)
$$S^0 \xrightarrow{\iota} R \xrightarrow{\kappa} C \xrightarrow{\lambda} S^1.$$

We define

(1.5)
$$\Xi_0 = \{\xi_0 \in [C, R] \colon \xi_0 \kappa = 1_R - \mu_0(1_R \wedge \iota)\}.$$

Hereafter, for spectra X and Y, $[X, Y]_n$ denotes the group of maps from $\Sigma^n X$ to Y. Beisdes [X, Y] denotes $[X, Y]_0$.

Theorem 1.6. There exists $\mu_1 \colon R \land R \to R$ such that the pair (ι, μ_1) is a two-sided unital ring spectrum structure if and only if $\xi_0(1_C \land \lambda) = 0$ for some $\xi_0 \in \Xi_0$.

Suppose that R admits a two-sided unital multiplication μ_1 . It is easy to see that, if $[R \wedge R, R]$ is 2-divisible, then

(1.7)
$$\mu_2 = \frac{1}{2}(\mu_1 + \mu_1 T)$$

gives two-sided unital and commutative ring spectrum structure (ι, μ_2) to R.

On the other hand, for the problem whether or not the pair (ι, μ_1) is associative, we have the following result.

Theorem 1.8. For the two-sided unital ring spectrum structure (ι, μ_1) , the associator is

$$\alpha(\mu_1)(\kappa \wedge \kappa \wedge 1_R),$$

where $\alpha(\mu_1)$ is in (2.3). Furthermore, the multiplication μ_1 is associative if and only if $\alpha(\mu_1) = 0$.

As an easy application, we apply these results to the cofiber of a generator in the homotopy groups of the sphere spectrum as follow:

Corollary 1.9. Let p be a prime number, and f be an essential element in the homotopy group $\pi_n(S^0)$ of the p-local sphere spectrum. For a cofiber W of f, the following hold:

- (i) If $\pi_{2n+1}(W) = 0$, then W has a two-sided unital ring spectrum structure.
- (ii) In addition, if p > 2, then W has a two-sided unital, and commutative ring spectrum structure.

In the last section, as typical examples, we investigate the ring spectrum structure of

- The mod p Moore spectrum, and
- The cofiber of the generator β_1 in the homotopy group $\pi_*(S^0)$, which is the first nontrivial element in the cokernel of J.

Acknowledgements. The author would like to thank Professor Katsumi Shimomura for helpful comments to this note.

Received: October 1, 2018

^{*} Faculty of Fundamental Science, National Institute of Technology, Niihama College, Niihama, 792-8580, Japan

2 Proof of Theorem 1.6 and Theorem 1.8

Lemma 2.1. For a cofiber sequence

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X,$$

if f has a retraction $r: Y \to X$, then there exists a unique map $\hat{r}: Z \to Y$ such that

(i)
$$g\hat{r} = 1_Z$$
,
(ii) $fr + \hat{r}g = 1_Y$, and
(iii) $r\hat{r} = 0$.

Proof. Since r is a retraction of f, for the cofiber sequence in the statement, we have $(1_Y - fr)f = 0$. This implies that there exists $\hat{r}: Z \to Y$ such that

$$1_Y - fr = \widehat{r}g.$$

Besides $(g\hat{r} - 1_Z)g = g(1_Y - fr) - g = 0$, and so we have a map $t: \Sigma X \to Z$ such that $th = g\hat{r} - 1_Z$. Therefore,

$$g\hat{r} - 1_Z = th = trfh = 0.$$

and

$$r\widehat{r} = rfr\widehat{r} = r(1_Y - \widehat{r}g)\widehat{r} = r\widehat{r}(1_Z - g\widehat{r}) = 0.$$

If there exists a map \hat{r}' such that $g\hat{r}' = 1_Z$, $fr + \hat{r}'g = 1_Y$, and $r\hat{r}' = 0$, then

$$\widehat{r}' = \widehat{r}'g\widehat{r} = (1_Y - fr)\widehat{r} = \widehat{r}.$$

Therefore, the uniqueness of \hat{r} is shown.

Proof of Theorem 1.6. First we consider a cofiber sequence

$$(2.2) R \xrightarrow{\iota \wedge 1_R} R \wedge R \xrightarrow{\kappa \wedge 1_R} C \wedge R \xrightarrow{\lambda \wedge 1_R} \Sigma R.$$

We note that the map μ_0 is a retraction of $\iota \wedge 1_R$. By Lemma 2.1, we have a map $\hat{\mu}_0 \colon C \wedge R \to R \wedge R$ such that

- $(\kappa \wedge 1_R)\widehat{\mu}_0 = 1_{C \wedge R},$
- $(\iota \wedge 1_R)\mu_0 + \widehat{\mu}_0(\kappa \wedge 1_R) = 1_{R \wedge R}$, and
- $\mu_0 \hat{\mu}_0 = 0.$

Suppose that there exists μ_1 in the statement, then

$$\begin{aligned} \mu_1 \widehat{\mu}_0 (1_C \wedge \iota) \kappa &= & \mu_1 \widehat{\mu}_0 (\kappa \wedge 1_R) (1_R \wedge \iota) \\ &= & \mu_1 \left(1_{R \wedge R} - (\iota \wedge 1_R) \mu_0 \right) (1_R \wedge \iota) \\ &= & \mu_1 (1_R \wedge \iota) - \mu_1 (\iota \wedge 1_R) \mu_0 (1_R \wedge \iota) \\ &= & 1_R - \mu_0 (1_R \wedge \iota). \end{aligned}$$

This implies that $\xi_0 = \mu_1 \widehat{\mu}_0 (1_C \wedge \iota)$ is in Ξ_0 , and

$$\xi_0(1_C \wedge \lambda) = 0.$$

Conversely, we suppose that there exists $\xi_0 \in \Xi_0$ in the statement, and cosider a cofiber sequence

$$C \xrightarrow{1_C \wedge \iota} C \wedge R \xrightarrow{1_C \wedge \kappa} C \wedge C \xrightarrow{1_C \wedge \lambda} \Sigma C,$$

Since $\xi_0(1_C \wedge \lambda) = 0$, there exists a map $\xi_1 \colon \Sigma C \wedge R \to R$ such that

$$\xi_1(1_C \wedge \iota) = \xi_0.$$

We define

$$\mu_1 = \mu_0 + \xi_1(\kappa \wedge 1_R),$$

 $\mu_1(\iota \wedge 1_R) = (\mu_0 + \xi_1(\kappa \wedge 1_R)) (\iota \wedge 1_R)$ = $\mu_0(\iota \wedge 1_R)$ = $1_R,$

and

then

$$\begin{aligned} \mu_1(1_R \wedge \iota) &= (\mu_0 + \xi_1(\kappa \wedge 1_R)) (1_R \wedge \iota) \\ &= \mu_0(1_R \wedge \iota) + \xi_1(\kappa \wedge 1_R)(1_R \wedge \iota) \\ &= \mu_0(1_R \wedge \iota) + \xi_1(1_C \wedge \iota)\kappa \\ &= 1_R - \xi_0 \kappa + \xi_0 \kappa \text{ (by } \xi_0 \in \Xi_0) \\ &= 1_R. \end{aligned}$$

Therefore, the pair (ι, μ_1) is a two-sided unital ring spectrum structure on R.

Next turn to Theorem 1.8. For a left unital multiplication $\mu: R \wedge R \to R$, we define

(2.3)
$$\alpha(\mu) = \mu(1_R \wedge \mu)(\widehat{\mu} \wedge 1_R)(1_C \wedge \widehat{\mu})$$

Proof of Theorem 1.8. For a two-sided unital multiplication μ_1 , we have

$$\begin{array}{ll} & \mu_1(1_R \wedge \mu_1)(\widehat{\mu}_1 \wedge 1_R)(\kappa \wedge 1_{R \wedge R}) \\ = & \mu_1(1_R \wedge \mu_1)\left(1_{R \wedge R \wedge R} - (\iota \wedge 1_{R \wedge R})(\mu_1 \wedge 1_R)\right) \\ = & \mu_1(1_R \wedge \mu_1) - \mu_1(\mu_1 \wedge 1_R), \end{array}$$

and

$$\begin{array}{rcl} & \mu_1(1_R \wedge \mu_1)(\widehat{\mu}_1 \wedge 1_R)(1_C \wedge \iota \wedge 1_R)(1_C \wedge \mu_1)(\kappa \wedge 1_{R \wedge R}) \\ = & \mu_1(1_R \wedge \mu_1)(\widehat{\mu}_1 \wedge 1_R)(\kappa \wedge 1_{R \wedge R})(1_R \wedge \iota \wedge 1_R)(1_R \wedge \mu_1) \\ = & \mu_1(1_R \wedge \mu_1)(1_R \wedge \iota \wedge 1_R)(1_R \wedge \mu_1) \\ & -\mu_1(1_R \wedge \mu_1)(\iota \wedge 1_{R \wedge R})(\mu_1 \wedge 1_R)(1_R \wedge \iota \wedge 1_R)(1_R \wedge \mu_1) \\ = & \mu_1(1_R \wedge \mu_1) - \mu_1(1_R \wedge \mu_1) \\ = & 0. \end{array}$$

From these, the calculation

 $\begin{aligned} &\alpha(\mu_1)(\kappa \wedge \kappa \wedge 1_R) \\ &= &\mu_1(1_R \wedge \mu_1)(\widehat{\mu}_1 \wedge 1_R)(1_C \wedge \widehat{\mu}_1)(1_C \wedge \kappa \wedge 1_R)(\kappa \wedge 1_{R \wedge R}) \\ &= &\mu_1(1_R \wedge \mu_1)(\widehat{\mu}_1 \wedge 1_R)(\kappa \wedge 1_{R \wedge R}) \\ &-&\mu_1(1_R \wedge \mu_1)(\widehat{\mu}_1 \wedge 1_R)(1_C \wedge \iota \wedge 1_R)(1_C \wedge \mu_1)(\kappa \wedge 1_{R \wedge R}) \\ &= &\mu_1(1_R \wedge \mu_1) - \mu_1(\mu_1 \wedge 1_R). \end{aligned}$

follows. Therefore, if $\alpha(\mu_1) = 0$, then μ_1 is associative. Conversely, if μ_1 is associative, then

$$\alpha(\mu_1) = (\mu_1(1_R \wedge \mu_1) - \mu_1(\mu_1 \wedge 1_R)) (\widehat{\mu}_1 \wedge 1_R)(1_C \wedge \widehat{\mu}_1)$$

implies
$$\alpha(\mu_1) = 0.$$

3 Application

Let p be a prime number. We take a nonzero element fin the *n*-th homotopy group $\pi_n(S^0)$ of the *p*-local sphere spectrum, and consider a cofiber sequence

$$(3.1) S^n \xrightarrow{f} S^0 \xrightarrow{i} W \xrightarrow{j} S^{n+1}.$$

Lemma 3.2. There exists a map $\mu_0: W \land W \to W$ such that the pair (i, μ_0) is a left unital ring spectrum structure on W if and only if $f \land 1_W: \Sigma^n W \to W$ is trivial.

Proof. If the map $f \wedge 1_W : \Sigma^n W \to W$ is trivial, then there exists a retraction μ_0 of $i \wedge 1_W$. Therefore (i, μ_0) is a left unital ring spectrum structure on W.

Conversely, if (i, μ_0) is left unital, then $\mu_0(i \wedge 1_W) = 1_W$. This implies $f \wedge 1_W = \mu_0(i \wedge 1_W)(f \wedge 1_W) = 0$.

Proof of Corollary 1.9. Consider an exact sequence

$$\pi_{2n+1}(W) \xrightarrow{j^*} [W,W]_n \xrightarrow{i^*} \pi_n(W).$$

Since $\pi_{2n+1}(W) = 0$, the induced map i^* is a monomorphism. We also have $i^*(f \wedge 1_W) = (f \wedge 1_W)i = if = 0$, and so the map $f \wedge 1_W$ is trivial. This implies that, by Lemma 3.2, the cofiber W has a left unital ring spectrum structure. Remark that, in this case, the set Ξ_0 in (1.5) is of the form

$$\Xi_0 = \{\xi_0 \in \pi_{n+1}(W) \colon \xi_0 j = 1_W - \mu_0(1_W \wedge i)\}$$

Since $\pi_{2n+1}(W) = 0$, we have $\xi_0 f = 0$ for any $\xi_0 \in \Xi_0$. Therefore, by Theorem 1.6, the cofiber W admits a twosided unital ring spectrum structure (i, μ_1) . Furthermore, if p > 2, then the group $[W \land W, W]$ is 2-divisible, and it follows that W admits a two-sided and commutative multiplication μ_2 from (1.7).

4 Examples

4.1 The mod *p* Moore spectrum

Let p be an odd prime number. The mod p Moore spectrum M(p) is defined by the cofiber sequence

$$S^0 \xrightarrow{p} S^0 \xrightarrow{i} M(p) \xrightarrow{j} S^1.$$

Recall that $\pi_0(S^0) = \mathbb{Z}_{(p)}, \, \pi_k(S^0) = 0$ for $k \in \{1, 2\}$, and

$$\pi_3(S^0) = \begin{cases} \mathbb{Z}/3\{\alpha_1\} & p = 3, \\ 0 & p > 3. \end{cases}$$

Therefore, by Corollary 1.9, the spectrum M(p) admits a two-sided unital, and commutative ring spectrum structure (i, μ_2) . We also note that $[M(p), M(p)] = \mathbb{Z}/p\{1_{M(p)}\}$. By Theorem 1.8, the multiplication μ_2 is associative if and only if $\alpha(\mu_2) \in [M(p), M(p)]_2$ is trivial. Since

$$[M(p), M(p)]_2 = \begin{cases} \mathbb{Z}/3\{i\alpha_1 j\} & p = 3, \\ 0 & p > 3, \end{cases}$$

we have the following:

- If p > 3, then the mod p Moore spectrum M(p) is a two-sided unital, commutative, and associative ring spectrum.
- The mod 3 Moore spectrum M(3) admits a twosided unital, and commutative ring spectrum structure (i, μ₂). The associator of μ₂ is of the form

$$x \cdot i\alpha_1(j \wedge j \wedge j)$$
 with $x \in \mathbb{Z}/3$.

Indeed, by [4, Lemma 6.2], we know that M(3) has no associative multiplication, and the associator is $\pm i\alpha_1(j \wedge j \wedge j)$.

Remark 4.1. In [1], Oka studied the ring spectrum structure of the mod k Moore spectrum for an even integer k.

4.2 The cofiber of β_1

Let p > 2 and q = 2(p-1). We consider $\beta_1 \in \pi_{pq-2}(S^0)$ and the cofiber sequence

$$S^{pq-2} \xrightarrow{\beta_1} S^0 \xrightarrow{i_W} W \xrightarrow{j_W} S^{pq-1}$$

This induces an exact sequence

$$\pi_{2pq-3}(S^0) \xrightarrow{(i_W)*} \pi_{2pq-3}(W) \\ \xrightarrow{(j_W)*} \pi_{pq-2}(S^0) \xrightarrow{(\beta_1)*} \pi_{2pq-4}(S^0).$$

Recall that, by [3] and [2], we have (4.2)

$$\pi_k(S^0) = \begin{cases} \mathbb{Z}/p^2 \{\alpha_{p/2}\} & k = pq - 1, \\ \mathbb{Z}/p \{\beta_1\} & k = pq - 2, \\ 0 & k = 2pq - 3, 2pq - 2, 3pq - 4, 3pq - 3 \end{cases}$$

and $\beta_1^2 \neq 0$. They imply $\pi_{2pq-3}(W) = 0$, and so, by Corollary 1.9, the cofiber W admits a two-sided unital, and commutative ring spectrum structure (i, μ_2) . By Theorem 1.8, for the associativity of μ_2 , it suffices to investigate

$$\alpha(\mu_2) \in [W, W]_{2pq-2}.$$

Consider the following two exact sequences:

$$\pi_{3pq-3}(W) \xrightarrow{(j_W)^*} [W,W]_{2pq-2}$$
$$\xrightarrow{(i_W)^*} \pi_{2pq-2}(W) \xrightarrow{(\beta_1)^*} \pi_{3pq-4}(W)$$

and

$$\pi_k(S^0) \xrightarrow{(i_W)_*} \pi_k(W) \xrightarrow{(j_W)_*} \pi_{k-pq+1}(S^0).$$

By these sequences and (4.2),

 $[W,W]_{2pq-2} = \mathbb{Z}/p^2 \{ \widetilde{\alpha}_{p/2} \}$ with $j_W \widetilde{\alpha}_{p/2} i_W = \alpha_{p/2}$,

and $\alpha(\mu_2) = x \cdot \widetilde{\alpha}_{p/2}$ with $x \in \mathbb{Z}/p^2$. By Theorem 1.8, the associator of μ_2 is

 $x \cdot \widetilde{\alpha}_{p/2}(j_W \wedge j_W \wedge 1_W)$ with $x \in \mathbb{Z}/p^2$.

References

- S. Oka, Multiplications on the Moore spectrum, Mem. Fac. Sci. Kyushu Univ. Ser. A 38 (1984), no. 2, pp. 257–276.
- [2] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, Providence, 2004.
- [3] H. Toda, p-primary components of homotopy groups.
 III. Stable groups of the sphere, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. **31** (1958) , pp. 191–210.
- [4] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971) 53–65.