石川由依* 長濵朋輝** 中山 享* 佐藤春実** 皆本千尋*

Formation of Calcium Alginate Gels by THz Raman Spectroscopy

Yui ISHIKAWA^{*} Tomoki NAGAHAMA^{**} Susumu NAKAYAMA^{*} Harumi SATO^{**} Chihiro MINAMOTO^{*}

Calcium alginate gels, prepared by adding calcium ions to aqueous sodium alginate, have been widely used as nano- and microcapsules in the food and pharmaceutical industries. The junction zone of calcium alginate gel has been popularly known as the "egg-box model" which involves dimerization of polymer chain through calcium ions. In this report, the formation of calcium alginate gel was investigated by IR and THz Raman spectroscopy. The C=O stretching band of sodium alginate and calcium alginate gels were observed at 1592 cm⁻¹ and 1588 cm⁻¹, respectively. The red shift of the C=O stretching band will be due to the interaction between calcium ions and oxygen atoms of alginate. A low-frequency Raman band at 100 cm⁻¹ was observed in sodium alginates, but disappeared in calcium alginate gels. The Ranan band of 100 cm⁻¹ will be ascribed to the motion of the helix structure of sodium alginate, and such structural motion will be suppressed by the formation of calcium alginate gel.

1. はじめに

アルギン酸を用いた人工イクラの製法は、日本カーバイド 工業株式会社により開発され、本物と見分けがつかないレベ ルの人工イクラが一時市場に出回っていたが、良質な外国産 イクラが安価に輸入されたことで最近はあまり見かけなくな った。人工イクラの製法原理は、アルギン酸を水に溶解させ

るためにナトリウム塩としたアルギン酸ナトリウムを水に溶 解し、その水溶液をカルシウムイオンを含む水に滴下し、水 に不溶のアルギン酸カルシウムゲルを表面に形成させるとい うものである(図1)^[1]。アルギン酸カルシウムゲルは熱に 安定で、他のゲル化剤(ゼラチンや寒天など)と違う特徴を もつ。アルギン酸カルシウムゲルを利用した研究にはマイク ロカプセル、さらにはナノカプセルといった微小容器として の利用を目指したものや、教育機関で開催される科学イベン ト等で広く行われ、人工イクラや人工フカヒレ、最近では「つ まむ水」として注目された。

アルギン酸は昆布やわかめ等の褐藻類の細胞間充填物質で 人体に無害であり、β-D-マンヌロン酸とα-L-グルロン酸がラ ンダムに共重合した直鎖状の多糖類である。アルギン酸は、 マグネシウムや水銀以外の二価以上の金属イオンとの反応に よりゲル化するが、比較的平坦な線状構造を有している D-マンヌロン酸ブロックではなく、ねじれた構造を有する L-グルロン酸ブロックのポケットにカルシウムイオンが侵入し

平成 30 年 10 月 1 日受付 (Received October 1, 2018)

* 新居浜工業高等専門学校生物応用化学科 (Department of Applied Chemistry and Biotechnology, National Institute of Technology, Niihama College, Niihama, 792-8580 Japan)

** 神戸大学大学院人間発達環境学研究科、灘市 (Graduate School of Human Development and Environment, Kobe University、

Nada, 657-8501 Japan)

て、図2および図3のような"エッグボックス"と例えられる キレート構造を形成することで進行すると考えられている ^[2,3]。Morrisらは透析の実験より、L-グルロン酸とCa²⁺が4:1 で存在しており、それがエッグボックスモデルによく合って いることを示した。しかし、アルギン酸カルシウムが明確な 結晶構造を示さないことから、他の架橋構造について未だ議 論が継続している。

図 2. Morris らにより描かれたエッグボックスモデル(丸 印はカルシウムイオンに配位した酸素原子を表している)

図 3. アルギン酸カルシウムのゲル化過程

レーザーラマン分光は近年測定精度の向上と理論的解析法 の進展により、これまであまり注目されていなかったテラへ ルツ(THz)帯の領域が再注目されている。THz帯とは通常、数 cm-1~200 cm-1程度の低振動数領域のことを指し、この振動数 領域のスペクトルには、時間領域でいうとピコ秒およびサブ ピコ秒の時間領域のダイナミックスに関する情報が含まれ、 高振動数領域における分子振動とは異なるところに興味が持 たれている。低波数領域で観測される運動としては、結晶で は格子振動、液体では比較的速い緩和モードがあり、固体の 格子振動の中でも、単結晶のような完全な周期性はないもの の、ある程度空間的にそろっているような集団モードが観測 される。例えば、固体 DNA では相対湿度により低振動数領 域のバンド位置が 16~22 cm⁻¹ とシフトすることが観測され ている。本研究では、テラヘルツ分光が高分子研究の新しい ツールになるための足がかりとして、汎用されているアルギ ン酸カルシウムゲルの状態をテラヘルツ領域ラマンスペクト ルで捉えることを試みた。

2. 実験と方法

アルギン酸ナトリウム (Sodium alginate, SA, Nacalai tesque Inc., 分子量 3 種 300, 500, 1000 cps) を蒸留水に溶解し 3.3 wt%水溶液とした。溶液中の気泡を抜くため、溶液を 24 時間 放置した。SA 水溶液に、1 wt%の乳酸カルシウム (Calcium lactic acid, 乳酸 Ca, Nacalai tesque, Inc.) 水溶液あるいは 1 wt%の塩化カルシウム (Calcium chloride, CaCl₂, Wako co.) 水 溶液を体積比 1:2 で混合し、アルギン酸カルシウム(SA-Ca) ゲルを作成した。SA 水溶液および SA-Ca ゲルは、100 ℃の 乾燥器で 8 時間以上乾燥させ、それぞれ SA フィルム、SA-Ca フィルムとした。

低振動数ラマン測定には ONDAX 社製 SureBlock XLF-CLM (分解能 3.5 cm⁻¹, 励起波長 830 nm, 露光時間 1000 ms, 積算 100回)、赤外分光測定には Thermo Nicolet 社製 Nexus 470 (分 解能 2 cm⁻¹, 積算 128 回, Microm ATR Czitek ダイヤモンド1 回反射)を使用した。X線回折は Rigaku 社製 MiniFlex II によ り行った。

3. 結果と考察

3-1 SA、SA-Ca ゲルフィルムの X 線結晶回折

SAと、乳酸 Ca による SA-Ca ゲルフィルムの X 線結晶回 折スペクトルを図4に示す。SA では13.4°と22.9°に2つの大 きなピークが観測され、これまでの報告によれば、それぞれ 0.69 nm と0.39 nm、(110)面と(002)面に相当し、SA の2/1 helix 構造を示していると考えられる^[4,5]。Sa-Ca ゲルフィルムにつ いては、これまで10°近傍に新しいバンドが観測されると報 告されているが、Li らは SA の3/1 helix 構造を提案する一方 で、Sikorski らはエッグボックス構造によるものと提案して いる。本報告ではLi や Sikorski のように Sa-Ca ゲルフィルム を延伸して結晶化を促進することを行っていないためか、10° 近傍のバンドを明らかにすることはできなかった。

3-2 SA、SA-Ca ゲルフィルムの赤外分光

SA (分子量 3 種 300 cps、500 cps、1000 cps) と、CaCl₂によ る SA-Ca ゲルフィルムの赤外スペクトルを図 5、6 に示す。 いずれの分子量においても SA では 1592 cm⁻¹、CaCl₂による SA-Ca ゲルフィルムでは 1588 cm⁻¹に C=O 伸縮振動バンドが 観測された。カルシウムイオンの添加に伴い SA の C=O 伸縮 振動バンドが低波数側にシフトした理由は、図 2 のエッグボ ックスモデルが示すように、SA の O 原子がカルシウムイオ ンとイオン架橋していることを反映したためと考えられる。 乳酸カルシウムの SA-Ca ゲルフィルムでは C=O 伸縮振動バ ンドが 1592 cm⁻¹に観測されシフトは見られなかったが、これ は乳酸が SA-Ca ゲルフィルム内に残存し、乳酸自身の C=O 基が観測されたためと考えられる。

図 6. SA-CaCl2の赤外スペクトル

3-3 SA、SA-Ca ゲルフィルムのラマン分光

SA(分子量3種300 cps、500 cps、1000 cps)と、CaCl₂によるSA-Caゲルフィルムのラマンスペクトルを図7、8 に示す。 いずれの分子量においてもSAではTHz領域の約100 cm⁻¹に バンドが観測されたが、SA-Caゲルフィルムでは100 cm⁻¹の バンドは消失した。これによりSAで観測される100 cm⁻¹の バンドは1/2 ヘリックス構造を有するSAの集合状態を反映 しており、カルシウムイオンとのエッグボックス構造形成に よりSAの集合状態がくずれたと考えられる。しかし、DFT 計算による100 cm⁻¹のラマンバンドの帰属については、多原 子分子の計算規模が大きすぎること、異性体構造が多数存在 することから詳細を確認することはできなかった。

4. 結論

SAのX線結晶回折スペクトルでは、13.4°と22.9°に2つの 大きなピークが観測され、従来の結果と同様にSAの2/1 helix 構造を示していると考えられる。SAとSA-Caゲルフィルム の赤外スペクトルでは、SAのC=O伸縮振動バンドは1592 cm⁻¹だったが、SA-Caゲルフィルムでは1588 cm⁻¹が観測され た。カルシウムイオンの添加によりSAのC=O伸縮振動バン ドが低波数側にシフトしたのは、図2のエッグボックスモデ ルのようにSAのO原子がカルシウムイオンとイオン架橋し ているためと考えられる。THz領域ラマンスペクトルではSA で観測された100 cm⁻¹のラマンバンドがらせん構造を 有するSAの集合状態に由来し、カルシウムイオンとのイオ ン架橋によりその集合状態がくずれたことを示唆している。

参考文献

 [1] 井上剛、森みどり「カプセル化技術を利用した新規着色 粒子の開発と水性多彩模様塗料への応用」塗料の研究, 1996, 146, 52-55

[2] Gregor T. Grant, Edwin R. Morris, David A. Rees, Peter J. C. Smith, David Thom, 'Biological interactions between polysaccharides and divalent cations: The egg-box model', FEBS Letters, 1973, 32, pp 195-198

[3] Edwin R. Morris, David A. Rees, David Thom, Jonathan Boyd 'Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation' Carbohydrate Research, 1978, 66, pp 145-154

[4] Pawel Sikorski, Frode Mo, Gudmund Skjåk-Bræk, Bjørn T. Stokke, 'Evidence for Egg-Box-Compatible Interactions in Calcium–Alginate Gels from Fiber X-ray Diffraction' Biomacromolecules, 2007, 8, pp 2098–2103

[5] Liangbin Li, Yapeng Fang, Rob Vreeker, Ingrid Appelqvist, Eduardo Mendes, 'Reexamining the Egg-Box Model in Calcium–Alginate Gels with X-ray Diffraction' Biomacromolecules, 2007, 8, pp 464-468

謝辞

本研究の一部は神戸大学分子フォトサイエンス研究センター の共同利用研究 H29017 によった。