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On a Simplified Method of Characterizing Hilbert Space

Yutaka IWAMOTO∗

The aim of this note is to inspect the simplified method of characterizing infinite-dimensional universal spaces given

in the paper [1] for the case of complete spaces and proper maps. We adopt here a modified stability axiom for model

spaces and give a detailed description of Toruńczyk’s characterization theorem for Hilbert spaces following the flow

of [1]. Detailed proofs of folklore statements are also given.

　

1 Introduction

All spaces under consideration are assumed to be

separable metrizable and all maps continuous. The aim

of this note is to inspect the simplified method of charac-

terizing infinite-dimensional universal spaces proposed by

Jan J. Dijkstra, Michael Levin and Jan van Mill [1]. In

particular, we focus our attention to the case of complete

spaces and proper maps. In section 2, we give detailed

proofs of folklore statements called Edwards’ shirinking

and Edwards’ trick. In sections 3–5, we give a detailed

description of Toruńczyk’s characterization theorem for

Hilbert spaces following the flow of [1]. After inspecting

proofs, we decided to adopt here the modified stability

axiom H × Q ≈ H for a model space H instead of the

original one. For compact case, the original stability axiom

H× [0, 1] ≈ H immediately implies H×Q ≈ H by Brown’s

approximation theorem [3, 6.7.4]. However, it is not so

simple for non-compact case. Also, we give detailed proofs

related to pseudo-interiors and the pseudo-boundaries

of the Hilbert cube. We think they should be checked

carefully though it is written in [1] simply.

2 Edwards’ Trick

Let f : X → Y be a proper map and A a subset of

X. The mapping cylinder M(f) of f is considered as the

quotient space of X × [0, 1] replacing X ×{1} with Y . We

identify the space M(f) \ Y with X × [0, 1) and denote it

by X[0, 1). In particular, we use the notation X[0] = X,

X[1] = Y and X[0, 1] = M(f). For each continuous map

ξ : X → (0, 1), we define X[0, ξ] = {(x, t) ∈ X[0, 1) | 0 ≤
t ≤ ξ(x)} and X[ξ, 1] = {(x, t) ∈ X[0, 1) | ξ(x) ≤ t}∪X[1].

If η : X → (0, 1) is a map with ξ(x) ≤ η(x) for every
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x ∈ X, we define X[ξ, η] = {(x, t) ∈ X[0, 1) | ξ(x) ≤ t ≤
η(x)} ⊂M(f). Similarly, the spaces A[0, ξ], A[ξ, η], A[ξ, 1]

and so forth are defined in similar fashion.

Let β : X → Y be a map and A ⊂ X. We say that β is

fully injective on A if β−1(β(A)) = A and β � A : A → Y

is one-to-one.

Proposition 2.1 (Edwards’ Shrinking [2], [1]). Let f :

X → Y be a proper surjection between complete spaces.

Let β : M(f) → Y be a proper map such that β is fully

injective on X×{0}, where cf :M(f) → Y is the collapsing

map. Then, for each open cover U of M(f), there is a

homeomorphism h : M(f) → M(f) such that cf = cf ◦ h
and the fibers of β ◦ h refines U .

Proof. Let U be an open cover of M(f). Identifying Y

with X[1] ⊂ X[0, 1] =M(f), we take an open cover UY so

that UY ≺ U � Y .

Lemma 2.2. There are a map ξ : X → (0, 1) and an open

cover V of Y such that {f−1(V )[ξ, 1] | V ∈ V } ≺ U .

Proof. For each x ∈ X, let ξ′(x) be the infimum of s ∈ [0, 1]

such that there exist a neighborhood N of f(x) in Y and an

elemtnt U ∈ U with f−1(N)[s, 1] ⊂ U . Then it is easy to

see that ξ′ : X → [0, 1) is a well-defined function. Also, it

is easy to see that ξ′ is an upper semi-continuous function.

Let ξ : X → (0, 1) be a map such that ξ(x) > 2−1(1 +

ξ′(x)) for every x ∈ X. Fix a point x ∈ X and let δ = ξ′(x)

and 4ε = 1 − δ. Then there are open neighborhood N of

f(x) and an element U ∈ U such that f−1(N)[ε+ δ, 1] ⊂
U . The set W = Y \ f(X \ ξ−1((ε + δ, 1])) is an open

neighborhood of f(x). Put y = f(x) and Vy = W ∩ N .

Then the collection V = {Vy | y ∈ Y } is a required open

cover of Y .
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We may assume that UY ≺ V without loss of generality.

Lemma 2.3. There exist an open cover UX of X and a

sequence {ti : X → (0, 1) | i ∈ N} of maps with ti+1(x) <

ti(x) and limi→∞ ti(x) = 0, ∀x ∈ X, such that

(1) {c−1
f (U) ∩X[t2, 1] | U ∈ UY } ≺ U and

(2) {U [ti+2, ti] | U ∈ UX} ≺ U , ∀i ∈ N.

Proof. For each x ∈ X, we define γ′(x) as the supremum

of s ∈ (0, 1] such that, for each t ∈ [0, 2−1(ξ(x) + 1)], there

is an element U ∈ U such that {x}×([t−s, t]∩ [0, 1]) ⊂ U .

Then the function γ′(x) is well-defined by the compactness

of the interval [0, 2−1(ξ(x)+1)]. Also, it follows that γ′(x)

is lower semi-continuous.

Let γ : X → (0, 1) be a map such that γ(x) <

min{2−1γ′(x), ξ(x)} for every x ∈ X. Then we define the

sequence of maps t1 > t2 > t3 > · · · as follows: Define

t2(x) = ξ(x) and t1(x) = ξ(x)+min{γ(x), 2−1(1− t2(x))}.
For i ≥ 3, define ti(x) = ti−1(x) −min{γ(x), 2−1ti−1(x)}.
Then ti+1(x) < ti(x) and limi→∞ ti(x) = 0 for ev-

ery x ∈ X. Since c−1
f (U) ∩ X[t2, 1] = f−1(U)[t2, 1]

for every U ∈ UY and UY ≺ V , the condition (1)

is satisfied by Lemma 2.2. It is now obvious that

ti(x)− ti+1(x) < γ(x) < 2−1γ′(x). By the definition of ξ′,

each point x ∈ X has an open neighborhood Ux such that

Ux[ti+2, ti] is contained in some element Ui ∈ U for each

i ∈ N. Thus the open cover UX = {Ux | x ∈ X} satisfies

the condition (2).

For each y ∈ Y , put Fy = β−1(y). Recall that M(f) \
Y = X[0, 1) and let pX : X[0, 1) → X be the projection.

Lemma 2.4. There exists a sequence {si : X → (0, 1) |
i ∈ N} of maps with si+1(x) < si(x) and limi→∞ si(x) = 0,

∀x ∈ X, such that, for each non-degenerate fiber Fy,

(1) if Fy∩X[0, s1] ̸= ∅ then Fy ⊂ X[0, 1) and pX(Fy) ⊂ U

for some U ∈ UX ,

(2) if Fy ∩X[s1, 1] ̸= ∅ then Fy ⊂ X(s2, 1],

(3) if Fy ∩ X[s1, 1] = ∅ then Fy ⊂ X(si+2, si) for some

i ∈ N.

Proof. For each x ∈ X, let βx denote the point β((x, 0)).

Let Ux be an element of UX such that x ∈ Ux and let Vx

be an open neighborhood of (x, 0) ∈ M(f) such that x ∈
Vx ⊂ p−1

X (Ux) ⊂ X[0, 1) ⊂M(f). Since β is a proper map

and fully injective on X[0], the point βx is not contained in

the closed set β(X[0, 1] \ Vx). Hence we can take an open

neighborhood Wx of βx in Y so that Wx ⊂ Y \ β(X[0, 1] \

Vx). Then β
−1(Wx) is an open neighborhood of x inX[0, 1]

such that β−1(Wx) ⊂ p−1
X (Ux) ⊂ X[0, 1).

Put W = ∪x∈XWx. Then W is an open neighborhood

of β(X[0]) in Y such that β−1(W ) ⊂ X[0, 1). Let U be an

open neighborhood of β(X[0]) in Y such that β(X[0]) ⊂
U ⊂ U ⊂ W . Put G1 = β−1(U). Then β−1(β(G1)) = G1

and G1 ⊂ β−1(U) ⊂ X[0, 1). We define a function s′1 :

X → (0, 1) by s′1(x) = sup{s ∈ (0, 1) | {x}[0, s] ⊂ G1}.
Now it is obvious that s′1 is a well-defined and lower semi-

continuous function.

Let s1 : X → (0, 1) be a map such that s1(x) <

min{s′1(x), 2−1} for every x ∈ X. Let y = βx ∈ Y .

If Fy = β−1(y) is a non-degenerate fiber with

Fy ∩ X[0, s1] ̸= ∅, then Fy ⊂ β−1(W ) ⊂ X[0, 1).

Since y = βx ∈ Wx and β−1(Wx) ⊂ p−1
X (Ux), we have

pX(Fy) ⊂ Ux ∈ UX , i.e., the condition (1) is satisfied.

By the same manner, we can take a neighborhood G2 of

X[0] such that β−1(β(G2)) = G2 and G2 ⊂ X[0, s1). And

we take the lower semi-continuous function s′2 : X → (0, 1)

defined by s′2(x) = sup{s ∈ (0, 1) | {x}[0, s] ⊂ G2} and a

map s2 : X → (0, 1) with s2(x) < min{s′2(x), 2−2}. Then

the condition (2) is satisfied.

Inductively, as above, we construct an open neighbor-

hood Gi of X[0] and a map si : X → (0, 1) so that

β−1(β(Gi)) = Gi, si < 2−i andX[0, si) ⊂ Gi ⊂ X[0, si−1).

Then the condition (3) is satisfied.

Let s0, t0 : X → [0, 1] be the constant map s0(x) =

t0(x) = 1. Let h′ : X × [0, 1] → X × [0, 1] be the homeo-

morphism that maps every interval {x}×[ti+1(x), ti(x)] lin-

early onto the corresponding interval {x}× [si+1(x), si(x)].

Then we obtain the homeomorphism h : M(f) → M(f)

induced by h′ sliding the [0, 1]-factor, i.e., cf ◦ h = cf .

Let y ∈ Y and take an element Uy ∈ UY so that y ∈ Uy ∈
UY . Now we suppose that the fiber (β◦h)−1(y) = h−1(Fy)

is non-degenerate. If Fy ∩X[s1, 1] ̸= ∅ then Fy ⊂ X(s2, 1]

by Lemma 2.4 (2). Then, by Lemma 2.3 (1), h−1(Fy) ⊂
c−1
f (Uy)[t2, 1] which is contained in some element of U . In

case Fy ∩ X[s1, 1] = ∅, we have Fy ∩ X[0, s1] ̸= ∅, that

is, there is an element U ∈ UX such that pX(Fy) ⊂ U by

Lemma 2.4 (1). Also, Fy ⊂ X(si+1, si) for some i ∈ N

by Lemma 2.4 (3). Then h−1(Fy) ⊂ U [ti+1, ti] which is

contained in some element of U by Lemma 2.3 (2). Thus

the fibers of β ◦h refines U . This completes the proof.

Lemma 2.5. If f : X → Y is a proper map then the

collapsing map cf :M(f) → Y is also a proper map. �
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Corollary 2.6. If f : X → Y is a proper map and β :

M(f) → Y is a map with cf = β ◦ α for some map α :

M(f) →M(f), then β is a proper map. �

Theorem 2.7 (Bing’s Shrinking Criterion (cf. [6, Theo-

rem 2.7.1 and Remark 2.8])). A proper surjection f : X →
Y between complete spaces is a near homeomorphism if it

satisifies the following:

(†) For each open covers U of X and V of Y , there is a

homeomorphism h : X → X such that f ◦h is V -close

to f and {h(f−1(y)) | y ∈ Y } ≺ U . �

Proposition 2.8 (Edwards’ Trick [1, 2.1]). Let f : X →
Y be a proper surjection between complete spaces and let

cf : M(f) → Y be the collapsing map. Assume that, for

each open cover V of Y , there are a near homeomorphism

α : M(f) → M(f) and a map β : M(f) → Y which is

V -close to cf and fully injective on X×{0} such that cf =

β ◦ α. Then cf is a near homeomorphism.

Proof. Let U , UY be open covers of M(f) and Y respec-

tively. We shall construct a homeomorphism h : M(f) →
M(f) which is c−1

f (UY )-close to the identity such that

{(cf ◦ h)−1(y) | y ∈ Y } ≺ U . Note that cf is a proper

surjection by Lemma 2.5. Thus the proposition follows

from the Bing’s shrinking criterion 2.7.

Note that the map β is proper by Corollary2.6. We refine

UY so as to satisfy the condition of Lemma 2.3.

By Lemma 2.2 and Lemma 2.3, there exist an open cover

UX of X and a sequence {ti : X → (0, 1) | i ∈ N} of maps

with ti+1(x) < ti(x) and limi→∞ ti(x) = 0, ∀x ∈ X, such

that

(1) {c−1
f (UY ) ∩X[t2, 1] | UY ∈ UY } ≺ U and

(2) {UX [ti+2, ti] | UX ∈ UX} ≺ U , ∀i ∈ N.

Let U ′
X be a star refinement of UX . By Lemma 2.4,

there exists a sequence {si : X → (0, 1) | i ∈ N} of maps

with si+1(x) < si(x) and limi→∞ si(x) = 0, ∀x ∈ X, such

that, for each non-degenerate fiber Fy,

(3) if Fy∩X[0, s1] ̸= ∅ then Fy ⊂ X[0, 1) and pX(Fy) ⊂ U

for some U ∈ U ′
X ,

(4) if Fy ∩X[s1, 1] ̸= ∅ then Fy ⊂ X(s2, 1],

(5) if Fy ∩ X[s1, 1] = ∅ then Fy ⊂ X(si+2, si) for some

i ∈ N.

Let V be an open neighborhood of Y such that stV ≺
UY . Then there are a near homeomorphism α : M(f) →
M(f) and a map β : M(f) → Y which is V -close to cf

and fully injective on X × {0} such that cf = β ◦ α. Let

W be an open cover of M(f) satisfying the following:

(6) {st (Fy, stW ) | y ∈ Y } ≺ c−1
f (UY ),

(7) st {W ∈ W |W ⊂ X[0, 1)} ≺ p−1
X (U ′

X) and

(8) st (X[si+1, si], stW ) ⊂ X[si+2, si−1], ∀i ∈ N.

Let φ : M(f) → M(f) be a homeomorphism W -close to

α. Let ψ : M(f) → M(f) be the sliding homeomorphism

which maps the intervals {x}× [ti+1, ti] → {x}× [s2i+2, s2i]

and {x}×[t1, 1] → {x}×[s2, 1] linearly for every x ∈ X with

cf ◦ ψ = cf . We define h :M(f) →M(f) by h = φ−1 ◦ ψ.
By the condition (1)–(8), one can see that {(cf ◦ h)−1(y) |
y ∈ Y } ≺ U and that cf ◦ h is UY -close to cf . Thus

the proposition follows from the Bing’s shrinking criterion

2.7.

3 Nice Maps

The Hilbert cube, the pseudo-interior and the pseudo-

bandary are denoted by Q, s and B(Q) respectively, that

is, Q = Π∞
i=1[−1, 1]i, s = Π∞

i=1(−1, 1)i, and B(Q) = Q\ s.
A surjective proper map f : X → Y is called a cell-like

map if f−1(y) is a cell-like compactum for every y ∈ Y .

A completely metrizable space is called an L-space if it is

strongly universal AR.

Definition 3.1. An L-space H is called an ℓ2-model space

if it satisfies the following:

• (Stability) H ≈ H ×Q;

• (Z-set unknotting) For each open cover U of H and a

homeomorphism h : Z1 → Z2 between Z-sets Z1 and Z2

ofH which is supported on some open set U inH and U -

homotopic to the identity, there exists a homeomorphism

h̃ : H → H which is U -homotopic to the identity such

that h̃ � Z1 = h and supported by U .

One should note thatH ≈ H×[0, 1] wheneverH is an ℓ2-

model space since H ≈ H×Q ≈ H×Q× [0, 1] ≈ H× [0, 1].

Lemma 3.2. Let Y be a space and C a compactum. For

each open cover U of Y × C, there exists a map γ : Y →
(0, 1) such that {B((y, c), γ(y)) | (y, c) ∈ Y × C} ≺ U .

Proof. Let r : Y × C → (0, 1) be a map such that

{B((y, c), r((y, c))) | (y, c) ∈ Y × C} ≺ U (c.f [5,

2.7.7(2)]). For each y ∈ Y , let ξ(y) = min{r(y, c) | c ∈ C}.
Then the function ξ : Y → (0, 1) is well-defined and

lower semi-continuous by the compactness of C. Hence

we can take a map γ : Y → (0, 1) such that γ(y) < ξ(y)
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for every y ∈ Y . Then the map γ satisfies the required

condition.

Theorem 3.3 (Mapping Replacement Theorem (cf. [6,

3.1.12])). If a complete ANR space X is strongly universal

then X satisfies the followig: For ach open cover U of X,

each complete space Y and a map f : Y → X such that

the restriction f � A : A → X to a closed subspace A is a

Z-embedding, there is a Z-embedding g : Y → X which is

an extension of f � A and U -close to f . �

Theorem 3.4 ([5, 7.5.4]). Let f : X → Y be a proper map

between ANRs X and Y . Then f is a cell-like map if and

only if f is a fine homotopy equivalence. �

For a proper map f : X → Y and a closed set A ⊂
Y , X ∪f A denotes the quotient space of X obtained by

collapsing the fibers over A to singletons.

Proposition 3.5 ([1, 3.1]). Let H be an ℓ2-model space,

Y an complete AR space and A a closed subset of Y . If

f : H → Y is a cell-like map such that f−1(A) is a Z-set

in H then the quotient map π : H → H ∪f A is a near

homeomorphism and A is a Z-set in H ∪f A.

Proof. We shall show that π : H → H∪f A is a near home-

omorphism by Bing’s shrinking criterion 2.7. Let U and

V be open covers of H and H ∪f A respectively. Since f is

a proper map, we can take a collection T of open sets in Y

such that ∪T ⊃ A and f−1(T ) ≺ π−1(V ). Let S be an

open cover of Y which refines the open cover T ∪ {Y \A}
of Y . Since f is a fine homotopy equivalence (Theorem

3.4), there is a map g : Y → H such that g ◦ f is f−1(S )-

homotopic to 1H . Let U ′ be an open star refinement of

both U and f−1(S ) such that any U ′-close two maps are

f−1(S )-homotopic. Using the strong universality of H,

we obtain a Z-embedding h : f−1(A) → H such that h is

U ′-close to g ◦f . Then h is f−1(S )-homotoic to the iden-

tity and h(f−1(a)) ⊂ st(g(f(f−1(a))),U ′) = st(g(a),U ′)

for each a ∈ A. Hence we have {h(f−1(a)) | a ∈ A} ≺ U .

By the Z-set unknotting of H, we obtain a homeomor-

phism h̃ : H → H supported by f−1(∪T ) such that h̃ is

f−1(S )-close to 1H with h̃ � f−1(A) = h � f−1(A). Since

{h̃(f−1(a)) | a ∈ A} = {h(f−1(a)) | a ∈ A} ≺ U and the

non-degenerate fibers of π is the set {f−1(a) | a ∈ A}, we
have {h(π−1(x)) | x ∈ H ∪f A} ≺ U . Hence the quotient

map π is a near homeomorphism by the Bing’s shrink-

ing criterion 2.7. Using a homeomorphism H → H ∪f A

sufficiently close to π, one can see that A is a Z-set in

H ∪f A.

Corollary 3.6 ([1, 3.2]). Let H be an ℓ2-model space,

f : H → Y a cell-like map and Y a complete AR space.

Then the quotient map π : H × [0, 1] → M(f) is a near

homeomorphism. In particular, H is homeomorphic to

M(f).

Proof. Note that the map f × id : H × [0, 1] → Y × [0, 1] is

cell-like and Y ×[0, 1] is a complete AR space. Let A = Y ×
{1} and note that (H× [0, 1])∪f×idA =M(f). Then A is a

closed set in H× [0, 1] and the set (f× id)−1(A) = H×{1}
is a Z-set in H× [0, 1] (cf. Lemma 3.2). Hence the quotient

map π : H × [0, 1] → (H × [0, 1])∪f×idA =M(f) is a near

homeomorphism by Proposition 3.5. By the stability of H,

we have H ≈ H × [0, 1] ≈M(f).

Lemma 3.7. Let f : X → Y be a proper map and let C

be a compactum. Then a map g = (gY , gC) : X → Y × C

is proper if and only if the map gY : X → Y is proper. �

Lemma 3.8. Let Y be a complete space and let

f = (fY , fQ) : X → Y × Q be a map. For each

open cover U of Y × Q, there exists a one-to-one

maps α, β : X → Q such that the maps fα = (fY , α),

fβ = (fY , β) : X → Y × Q are U -close to f with

fα(X) ⊂ Y ×B(Q) and fβ(X) ⊂ Y × s.

Proof. Let f = (fY , fQ) : X → Y × Q be a map and let

U be an open cover of Y × Q. By Lemma 3.2, we take

a continuous map γ : Y → (0, 1) so that {B((y, c), γ(y)) |
(y, c) ∈ Y × C} ≺ U . For each i ∈ N, let Yi = {y ∈ Y |
γ(y) ≥ 2−i} and Xi = f−1

Y (Yi). Since α is continuous, Xi

and Yi are closed in X and Y respectively. In particular,

the family {Xi}∞i=1 satisfies the conditions X1 ⊂ intX2 ⊂
X2 ⊂ · · · ⊂ Xi−1 ⊂ intXi ⊂ Xi ⊂ · · · and X = ∪∞

i=1Xi.

Let X0 = ∅ and f0 = fQ. We shall inductively construct

a sequence of maps fi : X → Q satisfying the following:

(1) fi � Xi−1 = fi−1 � Xi−1,

(2) fi � X \ intXi+1 = id,

(3) fi � Xi is one-to-one,

(4) d̂(fi, fi−1) < 2−i−2 and

(5) fi(Xi) is a Z-set in Q with fi(Xi) ⊂ B(Q),

where fi(Xi) is the closure of fi(Xi) in Q.

Assume fi−1 : X → Q has been constructed. Let Ki−1

and Ki be the closures of fi−1(Ki−1) and fi−1(Ki) in Q re-

spectively, that is, Ki−1 = fi−1(Xi−1) and Ki = fi−1(Xi).

Since Ki−1 is a Z-set in Q, there exists a Z-embedding
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g : Ki → Q such that g � Ki−1 = id and 2−i−3-homotopic

to the identity [4, 5.3.11]. Since B(Q) is a capset in Q and

Ki−1 is a Z-set contained in B(Q), there exists a homeo-

morphism h ∈ H(Q) such that h � g(Ki−1) = h � Ki−1 =

id, h(g(Ki)) ⊂ B(Q) and h is 2−i−3-homotopic to the iden-

tity [4, 5.4.2]. Since h ◦ g : Ki → Q is a Z-embedding

which is 2−i−2-homotopic to the identity, we have a 2−i−2-

homotopy H : Q× [0, 1] → Q, H0 = id and H1 = h◦g. Let
F : X × [0, 1] → Q be the pull-back of H by fi−1, that is,

the map defined by F (x, t) = H(fi−1(x), t). Then F is a

2−i−2-homotopy such that F0 = fi−1 and F1 = h◦g ◦fi−1.

SinceXi andX\intXi+1 are disjoint closed sets inX, there

is a Urysohn map λ : X → [0, 1] such that λ(Xi) = {1}
and λ(X \ intXi+1) = {0}. Then the map fi : X → Q
defined by fi(x) = F (x, λ(x)), x ∈ X is a required one.

Now we consider the uniform limit α = limi→∞ fi :

X → Q. Obviously, α is a well-defined continuous map.

For x ∈ Xi \ Xi−1, we note that fi−2(x) = fQ(x) and

the point moves at most twice by fi−1 and fi until

the limit point α(x). Hence, for x ∈ Xi \ Xi−1, we

have d(x, α(x)) = d(x, fi(x)) ≤ d(fi−2(x), fi−1(x)) +

d(fi−1(x), fi(x)) ≤ 2−i−1 + 2−i−2 < 2−i. Moreover, it

follows from (3) that α : X → Q is a one-to-one map. It is

obvious that the map fα = (fY , α) : X → Y ×Q satisfies

the condition fα(X) ⊂ Y × B(Q). Also, we can see that

fα is U -close to f since d̂(α � Xi \Xi−1, id) < 2−i.

To construct a map β : X → Q with the property that

fβ = (fY , β) : X → Y × Q is U -close to f and fβ(X) ⊂
Y × s, we only need slight modifications of the arguments

above. We consider the pseudo-interior s instead of B(Q),

and construct a sequence of maps {fi} satisfying conditions
(1)–(4) and

(5)′ fi(Xi) is a Z-set in Q with fi(Xi) ⊂ s,

In the inductive step, we use the property of the pseudo-

interior s insted of B(Q) to obtain a homeomorphism h ∈
H(Q) such that h � g(Ki−1) = h � Ki−1 = id, h(g(Ki)) ⊂ s

and h is 2−i−3-homotopic to the identity [4, 5.3.5]. Then we

can obtain the uniform limit map β = limi→∞ fi : X → Q
which satisfies the required conditions.

Corollary 3.9. Let X and Y be complete spaces. For each

proper map f : X → Y ×Q and an open cover U of Y ×Q,

there are closed embeddings fα, fβ : X → Y ×Q which are

U -close to f with fα(X) ⊂ Y ×B(Q) and fβ(X) ⊂ Y × s.

Proof. We define fα and fβ as in Lemma 3.8. Then the

maps fα and fβ are closed embedding by Lemma 3.7 since

f is a proper map.

Let f : X → Y be a map and let cf : M(f) → Y be the

collapsing map. We say f is a nice map if, for each open

cover U of Y , there is a closed embedding g : Y → Y such

that g is U -close to the identity and c−1
f (g(Y )) is a Z-set

in M(f).

Proposition 3.10. For a proper map f : X → Y between

complete spaces X and Y , the map f×1Q : X×Q → Y ×Q
is a nice map.

Proof. First we note that the mapping cylinderM(f ×1Q)

can be written as M(f) × Q. And the collapsing map

cf×1Q : M(f × 1Q) → Y × Q is written by cf × 1Q :

M(f)×Q → Y ×Q, where cf :M(f) → Y is the collapsing

map. Then the statement follow by Corollary 3.9.

Proposition 3.11 ([1, 3.3]). Let H be an ℓ2-model space

and Y an L-space. If f : H → Y is a nice cell-like map

then the collapsing map cf : M(f) → Y is a near homeo-

morphism.

Proof. We use the notation H[0] = H × {0} ⊂ M(f) =

H[0, 1] as in section 2. To see that cf is a near homeomor-

phism, we shall use the Edwards’ strategy 2.8. Let V and

V ′ be open covers of Y such that st2V ′ ≺ V . Since f is

a nice map and Y is strongly universal, there is a closed

embedding g : H[0] → Y which is V ′-close to cf � H[0]

such that c−1
f (Im g) is a Z-set in M(f). By Corollary 3.6,

M(f) is homeomorphic to H. Let A = Im g ⊂ Y . Since

f is a cell-like map, cf : M(f) → Y is a cell-like map

such that c−1
f (A) is a Z-set in M(f). Then the quotient

map π : M(f) → M(f) ∪cf A is a near homeomorphism

and A is a Z-set in M(f) ∪cf A by Proposition 3.5. Let

qf : M(f) ∪cf A → Y be the projection and let U be

an open star refinement of q−1
f (V ′). Take a homeomor-

phism h :M(f) →M(f)∪cf A which is U -close to π. Let

g′ : H[0] → A ⊂M(f)∪cf A be the embedding induced by

g. Thus, qf ◦ g′ = g and g′ is q−1
f (V ′)-close to π � H[0].

Then h−1 ◦ g′ : H[0] → h−1(A) is a homeomorphism be-

tween Z-sets in M(f) ≈ H which is c−1
f (stV ′)-close to

the identity. Indeed, cf ◦ h−1 ◦ g′ = qf ◦ π ◦ h−1 ◦ g′

is V ′-close to qf ◦ h ◦ h−1 ◦ g′ = qf ◦ g′ which is V ′-

close to qf ◦ π = cf . Using Z-set unknotting, there is a

homeomorphism γ : M(f) → M(f) which is c−1
f (stV ′)-

close to the identity such that γ � H[0] = h−1 ◦ g′. Then

h ◦ γ :M(f) →M(f) ∪cf A is a homeomorphism which is

q−1
f (st2V ′)-close to the identity such that h ◦γ(H[0]) = A.
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Put α = (h ◦ γ)−1 ◦ π :M(f) →M(f) and β = qf ◦ h ◦ γ :

M(f) → Y . Then β ◦ α = qf ◦ π = cf and β is V -close to

cf since st2V ′ ≺ V . Also we have β(H[0]) = qf (A) = A.

Then β is fully injective on H[0] since q−1
f (A) = A and h◦γ

is a homeomorphism with h ◦ γ � H[0] = g′ : h[0] → A.

Thus cf is a near homeomorphism by Proposition 2.8.

Lemma 3.12. Let X be a strongly universal com-

plete space and C a compactum. Then the projection

pX : X × C → X is a nice map.

Proof. Let cpX
: M(pX) → X be the collapsing map and

note that M(pX) ≈ X × cone(C). Let f : X → X be a Z-

embedding sufficiently close to the identity. Then one can

see that the set c−1
pX

(f(X)) ≈ f(X)× cone(C) is a Z-set in

M(pX) ≈ X × cone(C) using Lemma 3.2.

Corollary 3.13. The projection πH : H × [0, 1] → H is a

near homeomorphism whenever H is an ℓ2-model space.

Proof. The identity map 1H : H → H is a nice map by

Lemma 3.12 and M(1H) is homeomorphic to H × [0, 1].

Hence the projection πH : H × [0, 1] → H is a near home-

omorphism by Proposition 3.11.

Lemma 3.14. Let H be an ℓ2-model space and Y an L-

space. If f : H → Y is a nice cell-like map then f is a near

homeomorphism.

Proof. The collapsing map cf : M(f) → Y , the projec-

tion pH : H × [0, 1] → H and the quotient map π : H ×
[0, 1] → M(f) are near homeomorphisms by Propositions

3.11, Corollary 3.13 and Propotition 3.6 respectively. Sup-

pose that an open cover U of Y is given. Let V be an

open cover of Y such that st2 V ≺ U . We can take a

homeomorphisms α : M(f) → Y which is V -close to cf ,

β : H × [0, 1] → M(f) which is c−1
f (V )-close to π and

γ : H × [0, 1] → H which is f−1(V )-close to pH . Then it

follows that α ◦ β is st2 V -close to f ◦ γ. Indeed, for each

x ∈ H, α ◦ β(x) is V -close to cf ◦ β(x) which is V -close

cf ◦ π(x) and cf ◦ π(x) = f ◦ pH(x) is V -close to f ◦ γ(x).
Hence, α ◦β ◦ γ−1 is U -close to f . Thus f is a near home-

omorphism.

Theorem 3.15 ([1, 3.4 (ii)]). Let H be an ℓ2-model space

and Y an L-space. If f : H → Y is a cell-like map then f

is a near homeomorphism.

Proof. The product map f × 1Q : H × Q → Y × Q is a

nice cell-like map from an ℓ2-model space H ×Q ≈ H by

Proposition 3.10. Hence f × 1Q is a near homeomorphism

by Lemma 3.14. In particular, Y ×Q ≈ H ×Q ≈ H. So,

the projections pH : H × Q → H and pY : Y × Q → Y

are nice cell-like maps from ℓ2-model space onto L-spaces

by Lemma 3.12, whence they are near homeomorphisms by

Lemma 3.14. Thus f is a near homeomorphism.

4 Cell-like Resolutions

In the following proposition, we assumeX to be an ANR

though it is not required in the compact setting [1, 4.1].

If we consider the cone over a non-compact space X, we

always treat the metrizable cone C(X), that is, C(X) =

{∗}∪(X× [0, 1)) equipped with the topology that the open

sets of C(X) is generated by the open sets in X× [0, 1) and

the sets {∗} × (X × (1− ε, 1), 0 < ε < 1.

Proposition 4.1. Let H be an ℓ2-model space and X a

Z-set in H. Suppose that X is an ANR. Then any proper

map f : X → H can be extended to a cell-like map f̃ : H →
H.

Proof. First we consider the case that f(X) is a Z-set inH.

In this case, using Z-set unknotting of H, we may assume

that X ∩ f(X) = ∅ without loss of generality.

Claim 1. There is a Z-set A in H which is an AR con-

taining f(X) with A ∩X = ∅.

Indeed, take a small closed neighborhood F of f(X) in H

such that F ∩ X = ∅. Then a Z-embeded image of the

metrizable cone C(F ) is a required Z-set A (also we use

the Z-set unknotting of H to adjust the location of X). ♢

Using the strong universality of H, we can embed M(f)

as a Z-set in H so that A and X are identified with the

subsets of H. Let cf : M(f) → A be the collapsing map.

Put Y = H ∪cf A and let π : H → Y be the quotient map.

Claim 2. The quotient map π : H → Y is a cell-like map

between ARs.

It is easy to see that Y = H ∪cf A is an ANR [5, 6.5.3].

and π is a cell-like since the non-trivial part is equal to cf :

M(f) → A. Also, Y is an AR since π is a fine homotopy

equivalence (Theorem 3.4). ♢

By Proposition 3.5, π : H → Y is a near homeomor-

phism and A is a Z-set in Y . Let iA : A → A be the

identity map from A ⊂ Y to A ⊂ H. Then we can take

a homeomorphism g : Y → H such that g � A = iA. In-

deed, let h : H → Y be a homeomorphism. Since Y is

an ℓ2-model space, there is a homeomorphism l : Y → H
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such that l � h(A) = h−1 � h(A). Then g = l ◦ h is a

required one. Finally, put f̃ = g ◦ π : H → H. Then

f̃ � X = g ◦ f � X = (g � A) ◦ f = f and clearly f̃ is a

cell-like map. The case f(X) is a Z-set in H is proved.

Now we consider the general case. Let f0 : X → H×[0, 1]

be the map defined by f0(x) = (f(x), 0) ∈ H× [0, 1]. Then

f0(X) ⊂ H × {0} is a Z-set in H × [0, 1] ≈ H (we use the

stability of H here). Hence there is a cell-like extension

f̃0 : H → H × [0, 1] of f0. Let pH : H × [0, 1] → H be

the projection. Obviously, pH is a cell-like map. Then

the composition pH ◦ f̃0 : H → H is a required cell-like

extension of f since finite composition of cell-like maps

between ANRs is also a cell-like map [5, 7.5.5]. The proof

is finished.

For a map f : X → Y , let f∗ : X → Y × [1, 2] be

the map defined by f∗(x) = (f(x), 1). Then the mapping

cylinder M(f∗) is regarded as the union of M(f) and Y ×
[1, 2] by identifying Y ⊂ M(f) with Y × {1} ⊂ Y × [1, 2].

We describe the mapping cylinder M(f∗) by E(f) and call

E(f) the extended mapping cylinder of f . Let cY : E(f) →
Y be the map defined by cY � M(f) = cf and cY � Y ×
[1, 2] = pY , where pY : Y × [1, 2] → Y is the projection. By

pI : E(f) → [0, 2] be the projection which mapsM(f) onto

[0, 1] and Y × [1, 2] onto [1, 2]. For a < c < b, we sometime

rescale the intervals [0, 1] to [a, c] and [1, 2] to [c, b], that is,

pI(M(f)) = [a, c] and pI(E(f)) = [a, b]. In this case, E(f)

is called the extended mapping cylinder over [a, b] relative

to [a, c].

Proposition 4.2 ([1, 4.2]). Let H be an ℓ2-model space.

If r : H → A is a proper retraction then there is a cell-like

map from H onto the extended mapping cylinder E(r) of

r.

Proof. We note that r× 1 : H ×{1} → A×{1} is a proper

retraction between ANRs. Since H × {1} is a Z-set in H,

there is a cell-like extension f : H × [1, 2] → H × [1, 2] of

r×1 by Proposition 4.1. We identifyM(r)\A ⊂ E(r) with

H × [0, 1). Then we define g : H × [0, 2] → E(r) by g �
H× [0, 1) = id and g � H× [1, 2] = f . Using the stability of

H, we obtain a cell-like map g̃ : H ≈ H×[0, 2] → E(r).

Proposition 4.3. Let A be a closed subset of a complete

space X. If A is an L-space, then there is a proper retrac-

tion r : X → A.

Proof. Since A× [0, 1] is an L-space and A×{0} is a Z-set

in A× [0, 1], there is a Z-embedding f : X → A× [0, 1] such

that f � A is the identity map A→ A×{0}. Then pA ◦ f :

X → A is a proper retraction where pA : A× [0, 1] → A is

the retraction.

A retraction r : H → A is called a convenient retraction

if the fat mapping cylinder M(r∗) of r is homeomorphic to

H.

Proposition 4.4. Let H be an ℓ2-model space and let r :

H → A be a proper retraction. Then the map r × 1Q :

H ×Q → A×Q is a proper convenient retraction.

Proof. Since r×1Q : H×Q → A×Q is a proper retraction

and H×Q ≈ H, there is a cell-like map f : H → E(r×1Q)

by Proposition 4.2. If E(r× 1Q) is an L-space, then f is a

near homeomorphism and the statement follows by Theo-

rem 3.15. It is easy to see that E(r× 1Q) is a contractible

ANR, therefore, an AR. So, all we have to see is that

E(r × 1Q) is strongly universal. Let U and V be open

covers of E(r × 1Q) with stV ≺ U . Suppose that a map

g : X → E(r × 1Q) from a complete space X is given.

Since f is a fine homotopy equivalence (Theorem 3.4) and

H is strongly universal, we can take a closed embedding

h : X → H such that f ◦ h is V -close to g. Using the fact

that E(r × 1Q) ≈ E(r) × Q, there is a closed embedding

f ′ : H → E(r× 1Q) such that f ′ is V -close to f by Corol-

lary 3.9. Then the map g′ = f ′ ◦ h : X → E(r × 1Q) is

a closed embedding of X which is U -close to g. Hence

E(r × 1Q) is an strongly universal AR, that is, an L-

space.

Let r : H → A be a proper retraction. The map-

ping cylinder M(r) over the interval [a, b] is denoted by

Mr[a, b]. We use the notationMr[a] = H andMr[b] = A in

Mr[a, b]. If necessary, the sets A×{a}, A×{b} ⊂Mr[a, b]

are denoted by A[a], A[b] respectively. By the telescope

M(r, n) of n mapping cylinders of r, we mean the adjunc-

tion space of ∪n
i=1Mr[ti−1, ti] obtained by the identifica-

tion of A =Mr[ti] ⊂Mr[ti−1, ti] with the subspace A[ti] ⊂
Mr[ti] ⊂ Mr[ti, ti+1] for every i ≤ n ∈ N, where ti = i/n.

The induced collapsing map and projection of M(r, n) are

denoted by cnr : M(r, n) → A and pnI : M(r, n) → [0, 1]

respectively.

Similarly, we define the infinite telescope M(r,∞) of

(mapping cylinders of) r as the adjunction space of

∪∞
i=1Mr[si−1, si] using the sequence 0 = s0 < s1 <

· · · < si → ∞. Then the induced collapsing map

and projection are denoted by c∞r : M(r,∞) → A

and p∞I : M(r,∞) → [0,∞) respectively. We
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some time describe M(r, n) = ∪n
i=1Mr[ti−1, ti] and

M(r,∞) = ∪∞
i=1Mr[si−1, si] to indicate the ingredients of

the telescopes.

Proposition 4.5. Let H be an ℓ2-model space. If r : H →
A is a proper convenient retraction then M(r,∞) is home-

omorphic to the product space H × [0,∞).

Proof. Suppose that M(r,∞) is given by ∪∞
i=1Mr[i− 1, i].

Then (p∞I )−1([0, 1/2]) is homeomorphic to H × [0, 1] ≈ H

and (p∞I )−1([i+ 1
2 , i+

3
2 ]) is homeomorphic to E(r) which is

also homeomorphic to H since r is a convenient retraction.

Applying Z-set unknotting, we obtain a homeomorphism

h :M(r,∞) → H × [0,∞) which maps (p∞I )−1([0, 1/2]) to

H×[0, 1/2] and maps (p∞I )−1([i+ 1
2 , i+

3
2 ]) toH×[i+ 1

2 , i+
3
2 ]

for every i.

Proposition 4.6 ([1, 4.3]). Let H be an ℓ2-model space

and r : H → A a proper convenient retraction. Then there

is a homeomorphism h : M(r) → M(r, 2) such that the

restrictions h � A[0] : A[0] → A[0] ⊂Mr[0,
1
2 ] and h � A[1] :

A[1] → A[1] ⊂ Mr[
1
2 , 1] are the identity, where M(r) =

Mr[0, 1] and M(r, 2) = Mr[0,
1
2 ] ∪Mr[

1
2 , 1]. Moreover, h

can be choosen so that c2r ◦h is U -close to cr for each open

cover U of A.

Proof. Let V and W be coverings of H such that st4W ≺
V ≺ r−1(U ). We use the notation as in section 2, that is,

M(r) = H[0, 1]. Then we identify p−1
I ([0, 23 ]) with H[0, 23 ]

and (p2I)
−1([0, 23 ]) with E(r) which is homeomorphic to H

since r is a convenient retraction. With this identification,

E(r) is the extended mapping cylinder of r over [0, 23 ] rela-

tive [ 12 ,
2
3 ] and it is denoted by E[0, 23 ]. Especially, the sub-

spaces H×{0} and H×{ 2
3} of E[0, 23 ] are denoted by E[0]

and E[ 23 ] respectively. Let cH : E[0, 23 ] → H be the collaps-

ing map and let pH : H[0, 23 ] → H be the projection. Then

cH and pH are cell-like maps between ℓ2-model spaces,

whence they are near homeomorphisms by Theorem 3.15.

Let α : E[0, 23 ] → H and β : H[0, 23 ] → H be homeomor-

phisms such that α and β are W -close to cH and pH respec-

tively. We define a homeomorphism γ : H[0, 23 ] → E[0, 23 ]

by γ = α−1 ◦ β. Then cH ◦ γ : H[0, 23 ] → H is stW -close

to pH . Let i : E[0] → H[0] ⊂ H[0, 23 ] and j : E[ 23 ] →
H[ 23 ] ⊂ H[0, 23 ] be the identity maps. Then γ ◦ i and γ ◦ j
are c−1

H (stW )-close to the identity maps. Hence, there is a

homeomorphism ξ : E[0, 23 ] → E[0, 23 ] which is c−1
H (stW )-

close to the identity such that ξ � γ(H[0]) = (γ ◦ i)−1 and

ξ � γ(H[ 23 ]) = (γ ◦ j)−1. Then η = ξ ◦ γ : H[0, 23 ] → E[0, 23 ]

is a homeomorphism such that cH ◦ η is V -close to pH .

Moreover, η � H[0] = i−1 : H[0] → E[0] and η � H[ 23 ] =

j−1 : H[ 23 ] → E[ 23 ]. Now we define h :M(r) →M(r, 2) by

h � H[0, 23 ] = η and h � H[ 23 , 1] is the natural identifica-

tion of H[ 23 , 1] and (p2I)
−1([23 , 1]). Then h is a well-defined

homeomorphism such that c2r ◦ h is U -close to cr since

V ≺ r−1(U ). Now it is obvious that h � A[0] and h � A[1]
are the identity map.

Lemma 4.7. Let f : X → Y be a proper map. For a given

ε > 0, there is an open covering U of Y such that the fibers

f−1(y1) and f
−1(y2) of U -close two points y1, y2 ∈ Y are

contained in their ε-neighborhoods one another.

Proof. Consider the hyperspaces 2X and 2Y with the Haus-

dorff metric. Since f is a proper map, A = {f−1(y) | y ∈
Y } is a subspace of 2X . The hyperspace map 2f maps

A onto the subspace Y = {{y} | y ∈ Y } ⊂ 2Y . Let

F = 2X � A : A → Y. Then F is in fact a homeomor-

phism. Hence we can take an open cover U of Y so that

F−1(U ) ≺ {BdH (A, ε) | A ∈ A}.

Let f : X → Y be a proper map and let U be an open

covering of Y . If U satisfies the condition stated in Lemma

4.7, then we say U satisfies the property P(f, ε).

Proposition 4.8 ([1, 4.4]). Let H be an ℓ2-model space.

If there is a proper convenitent retraction r : H → A then

it induces a cell-like map Ψ : cone(H) → cone(A) (between

the metrizable cones).

Proof. It suffices to construct a cell-like map Φ :

M(r,∞) → A× [0,∞) since M(r,∞) is homeomorphic to

H × [0,∞) by Proposition 4.5. Then we obtain a cell-like

map Φ′ : H × [0,∞) → A × [0,∞), whence a cell-like

map Ψ : cone(H) → cone(A) is defined as its one point

compactification.

Let Mn(i) be the mapping cylinder of r over [ i−1
2n ,

i
2n ],

i = 1, 2, · · · , and let Mn = ∪∞
i=1Mn(i) be the infinite

telescope of r. Then M0 = M(r,∞) and M0 contains

the telescope M(r, n) of n mapping cylinders of r. Let

cn :Mn → A be the collapsing map and pn :Mn → [0,∞)

the projection. We note that A is an AR as a retract of an

AR space H, whence A is locally contractible. So, we can

take an open covering E1 of A such that meshE1 < 2−1 and

every element of E1 can be contracted to a point in some

set with diameter < 2−1. Since c0 �M(r, 1) :M(r, 1) → A

is a proper map, taking a refinement if necessary, we may

assume that E1 satisfies the property P(c0 � M(r, 1), 2−1)

by Lemma 4.7. By Proposition 4.6, we can take a homeo-
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morphism f10 :M0 →M1 such that c1 ◦ f10 is E1-close to c0

and f10 (M0(i)) =M1(2i−1)∪M1(2i) for every i ∈ N. Sup-

pose that homeomorphisms f ii−1 : Mi−1 → Mi and open

covers Ei of A have been constructed for i = 1, · · · , n. Let
fn0 = fnn−1 ◦ · · · ◦ f10 : M0 → Mn be the composition. For

each n ∈ N, we take an open covering En+1 of A satisfying

the following:

(1) stEn+1 ≺ En,

(2) meshEn+1 < 2−(n+1),

(3) En+1 satisfies the property P(cn◦fn0 �M(r, n), 2−(n+1))

and

(4) every element of En+1 can be contracted to a point in

some set with diameter < 2−(n+1).

The condition (3) is assured by Lemma 4.7 since cn ◦ fn0 �
M(r, n) : M(r, n) → A is a proper map. Then, using

Proposition 4.6, we can take a homeomorphism fn+1
n :

Mn →Mn+1 such that

(5) cn+1 ◦ fn+1
n :Mn → A is En+1-close to cn and

(6) fn+1
n (Mn(i)) =Mn+1(2i−1)∪M1(2i) for every i ∈ N.

Let γn : M0 → A and πn : M0 → [0,∞) be the collapsing

map and the projection through fn0 : M0 → Mn respec-

tively, that is, γn = cn ◦ fn0 and πn = pn ◦ fn0 . Then we

have

(3)′ En+1 satisfies the property P(γn � M(r, n), 2−(n+1))

and

(5)′ γn+1 is En+1-close to γn.

Claim 1. The sequences of maps {γn} and {πn} are uni-

formly convergence.

Indeed, suppose that a point x ∈ M0 and a number n are

given. Let i be the number such that fn0 (x) ∈ Mn(i).

Then πm(x) ∈ [ i−1
2n ,

i
2n ] for ∀m ≥ n by the condition

(6). So we have d(πn(x), πm(x)) < 2−n. Also, we have

d(γn(x), γn+1(x)) = d(cn ◦ fn0 (x), cn+1 ◦ fn+1
n ◦ fn0 (x)) <

2−(n+1) by condition (5) and (2). Thus, d(γn(x), γm(x)) ≤
2−(n+1)/(1− 2−1) = 2−n. ♢

Let γ :M0 → A and π :M0 → [0,∞) be the uniform lim-

its of {γn} and {πn} respectively. Then we define Φ :M0 →
A × [0,∞) by Φ(x) = (γ(x), π(x)), x ∈ M0. Similarly, we

define Φn : M0 → A × [0,∞) by Φn(x) = (γn(x), πn(x)),

x ∈M0, for each n. Clearly, {Φn} uniformly convergent to

Φ, i.e., limn→∞ Φn = Φ.

Claim 2. Φ is a proper map.

Let K be a compact subset of A × [0, 1). Then there

are a compact subset KA ⊂ A and an integer k

such that K ⊂ KA × [0, k]. Note that Φ−1(K) ⊂
Φ−1(KA × [0, k]) ⊂ γ−1(KA) ∩ π−1[0, k] ⊂ M(r, k).

Similarly, Φ−1
n (K) ⊂ γ−1

n (KA) ∩ M(r, k). Then

Φn � M(r, k) : M(r, k) → A × [0, 1) is a proper map since

γn � M(r, k) is a proper map. Thus, Φ−1
n (K) is compact

for every n ≥ k. Suppose n ≥ k and denote the restriction

γn �M(r, k) by ϕn :M(r, k) → A for notational simplicity.

By the conditions (3) and (5), the property P(ϕn, 2
−(n+1))

implies that dH(ϕ−1
n (a), ϕ−1

n+1(a)) < 2−(n+1) for every

a ∈ A. Hence the family {Φ−1
n (K)} is a Cauchy sequence

in 2M0 with limn→∞ Φ−1
n (K) = Φ−1(K) (c.f. [4, 1.11.2]).

Thus Φ−1(K) is compact. ♢

Now we shall check that Φ is a cell-like map. Let x =

(a, t) ∈ A× [0,∞) and F = Φ−1(x).

Claim 3. For each n ∈ N, there is i ∈ N such that fn0 (F ) ⊂
Mn(i) ∪Mn(i+ 1).

Indeed, if fn0 (F ) is contained in three mapping cylinders,

then the diameter of pm ◦ fm0 (F ) must be greater than

2−n for every m ≥ n by (6). Then the limit π(F ) =

limn→∞ πn(F ) cannot be the one point t. ♢

Claim 4. For each n ∈ N, γn(x) and γ(x) = a are En−1-

close for every x ∈ F . In particular, γn(F ) is contained in

an element of En−2.

Supposem > n and let x ∈ F . By (5)′, γm(x) and γm−1(x)

are Em-close. Then γm(x) and γm−2(x) are Em−2-close

since γm−1(x) and γm−2(x) are Em−1-close and stEm−1 ≺
Em−2. Suppose that γm(x) and γn+1(x) are En+1-close.

Then γm(x) and γn(x) are En-close since γn+1(x) and γn(x)

are En+1-close and stEn+1 ≺ En. Thus γ(x) = a and γn(x)

are En−1-close. Hence γn(F ) is contained in an element of

stEn−1 ≺ En−2. ♢

Let U be an closed neighborhood of γn(F ) such that

diamU < 2−(n−2) and γn(F ) can be contracted to a point

in U . Suppose that fn0 (F ) ⊂Mn(i) ∪Mn(i+ 1).

Claim 5. fn0 (F ) can be contracted to a point in c−1
n (U)∩

(Mn(i) ∪Mn(i+ 1)).

Indeed, we contract fn0 (F ) to γn(F ) × { i+1
2n } ⊂ A[ i+1

2n ] ⊂
Mn(i + 1) by the collapsing map Mn(i) ∪ Mn(i + 1) →
A. The collapsing is done in the set c−1

n (U) ∩ (Mn(i) ∪
Mn(i+1)). Then it is contracted to a point in U×{ i+1

2n } ⊂
A[ i+1

2n ] ⊂Mn(i+ 1). ♢
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Since γ and γn are En−1-close and the diameter of U is

smaller than 2−(n−2), the diameter of γ(γ−1
n (U)) is smaller

than 2−(n−3). Hence F can be contracted to a point in

Φ−1(B(a, 2−(n−3)) × [ i−1
2n ,

i
2n ]). Since we take n arbitrary

and Φ is a proper map, this means that F can be contracted

to a point in any neighborhood of itself, that is, Φ is a cell-

like map.

5 Topological characterization of Hilbert space

In this section, the cone over a space X always means the

metrizable cone over X. One should note that the natural

map π : X × [0, 1] → cone(X) sending X ×{1} to the cone

point {∗} is a quotient map if X is compact. However, it

is not a quotient map whenever X is not compact.

Proposition 5.1. Let H be an ℓ2-model space and let

cone(H) be the metrizable cone over H. If π : H × [0, 1] →
cone(H) is the natural map sending H × {1} to the cone

point {∗} then π is a near homeomorphism.

Proof. Let U and V be given open covers of H × [0, 1]

and cone(H) respectively. We shall construct a homeo-

morphism h : H× [0, 1] → H× [0, 1] such that {h(π−1(y)) |
y ∈ cone(H)} ≺ U and π ◦ h is V -close to π. Then the

statement follows from Bing’s shrinking criterion 2.7. Take

ε > 0 so that the neighborhood {∗} ∪ (H × (1 − 2ε, 1)) is

contained in some element of V . Let x ∈ H × (1− ε, 1) ⊂
H × [0, 1] be a point and let U be a neighborhood of x in

H × [0, 1] which is contained in some element of U . Then

the collapsing map c : H × {1} → {∗} can be approxi-

mated by a Z-embedding f : H × {1} → H × [0, 1] ≈ H

which is homotopic to c in H × (1 − ε, 1). By the Z-

set unknotting theorem, there is a homeomorphism h :

H × [0, 1] → H × [0, 1] supported by H × (1 − ε, 1) and

h � H × {1} = f .

Theorem 5.2 (cf. [1, 3.5]). Any L-space is a cell-like

image of any ℓ2-model space.

Proof. Let A be an L-space and H an ℓ2-model space. We

shall show that A × Q ≈ H. Then the projection pA :

A×Q→ A is a required cell-like map.

Without loss of generality, we may assume that A is a

closed subset of H. By Proposition 4.3, there is a proper

retraction r : H → A. Then r × 1Q : H × Q → A ×
Q is a proper convenient retraction by Proposition 4.4.

Since H ×Q ≈ H, there is a cell-like map Ψ : cone(H) →
cone(A×Q) by Proposition 4.8. Hence Ψ×1Q : cone(H)×
Q → cone(A×Q)×Q is also a cell-like map. One should

note that cone(A × Q) is an L-space (cf. [5, 6.5.7]) and

cone(H)×Q ≈ H by Proposition 5.1. So the map Ψ× 1Q

is a cell-like map from an ℓ2-model space onto an L-space,

that is, Ψ × 1Q : cone(H) × Q → cone(A × Q) × Q is a

near homeomorphism by Theorem 3.15. As a result, we

have cone(A × Q) × Q ≈ cone(H) × Q ≈ H × Q ≈ H.

Considering the natural projection ((A×Q)× [0, 1])×Q →
cone(A×Q)×Q ≈ H, we can see that ((A×Q)× [0, 1])×Q
is an H-manifold (locally homeomorphic to open subsets

of H). Hence, the space A × Q ≈ ((A × Q) × [0, 1]) × Q
is an ℓ2-model space. In fact, the universality follows from

the A’s universality and Z-set unknotting follows from the

open embedding theorem (cf. [6, 2.5.10]). So we have

cone(A×Q) is homeomorphic to A×Q by Proposition 5.1.

Therefore, A×Q ≈ A×Q×Q ≈ cone(A×Q)×Q ≈ H.

The proof is finished.

Theorem 5.3 (Characterization of Hilbert space). Any

L-space is homeomorphic to any ℓ2-model space. In partic-

ular, any complete strongly universal AR space is homeo-

morphic to the Hilbert space ℓ2.

Proof. The first part follows from Theorem 3.15 and The-

orem 5.2. The second part follow from the fact that ℓ2 is

an ℓ2-model space.
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