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On a Simplified Method of Characterizing Hilbert Space

Yutaka IWAMOTO*

The aim of this note is to inspect the simplified method of characterizing infinite-dimensional universal spaces given

in the paper [1] for the case of complete spaces and proper maps. We adopt here a modified stability axiom for model

spaces and give a detailed description of Toruriczyk’s characterization theorem for Hilbert spaces following the flow

of [1]. Detailed proofs of folklore statements are also given.

1 Introduction

All spaces under consideration are assumed to be
separable metrizable and all maps continuous. The aim
of this note is to inspect the simplified method of charac-
terizing infinite-dimensional universal spaces proposed by
Jan J. Dijkstra, Michael Levin and Jan van Mill [1]. In
particular, we focus our attention to the case of complete
spaces and proper maps. In section 2, we give detailed
proofs of folklore statements called Edwards’ shirinking
and Edwards’ trick. In sections 3-5, we give a detailed
description of Torunczyk’s characterization theorem for
Hilbert spaces following the flow of [1]. After inspecting
proofs, we decided to adopt here the modified stability
axiom H x Q =~ H for a model space H instead of the
original one. For compact case, the original stability axiom
H x[0,1] =~ H immediately implies H x Q ~ H by Brown’s
approximation theorem [3, 6.7.4]. However, it is not so
simple for non-compact case. Also, we give detailed proofs
related to pseudo-interiors and the pseudo-boundaries
of the Hilbert cube. We think they should be checked

carefully though it is written in [1] simply.
2 Edwards’ Trick

Let f: X — Y be a proper map and A a subset of
X. The mapping cylinder M (f) of f is considered as the
quotient space of X x [0, 1] replacing X x {1} with Y. We
identify the space M(f)\Y with X x [0,1) and denote it
by X[0,1). In particular, we use the notation X[0] = X,
X[1] =Y and X|[0,1] = M(f). For each continuous map
£:X — (0,1), we define X[0,¢] = {(z,¢) € X[0,1) |0 <
£< €()} and X[E, 1] = {(z1) € X[0,1) | €(x) < t}UX]1).
Ifn: X — (0,1) is a map with &(x) < n(z) for every

xz € X, we define X[&,n] = {(z,t) € X[0,1) | {(z) <t <
n(xz)} C M(f). Similarly, the spaces A0, ], A[¢,n], A[E, 1]
and so forth are defined in similar fashion.

Let 8: X — Y beamap and A C X. We say that g is
fully injective on A if 571 (B(A)) = Aand B A: A=Y

is one-to-one.

Proposition 2.1 (Edwards’ Shrinking [2], [1]). Let f :
X — Y be a proper surjection between complete spaces.
Let B : M(f) = Y be a proper map such that B is fully
injective on X x{0}, where cy : M(f) — Y is the collapsing
map. Then, for each open cover % of M(f), there is a
homeomorphism h : M(f) — M(f) such that ¢y = cyoh
and the fibers of B o h refines U .

Proof. Let % be an open cover of M(f). Identifying ¥
with X[1] C X[0,1] = M(f), we take an open cover %y so
that %y <% | Y.

Lemma 2.2. There are a map & : X — (0,1) and an open
cover ¥V of Y such that {f*(V)[,1] |V eV} <%.

Proof. Foreach z € X, let {'(z) be the infimum of s € [0, 1]
such that there exist a neighborhood N of f(z) in Y and an
elemtnt U € % with f~1(N)[s,1] C U. Then it is easy to
see that £’ : X — [0,1) is a well-defined function. Also, it
is easy to see that £ is an upper semi-continuous function.

Let € : X — (0,1) be a map such that £(x) > 271(1 +
&' (x)) for every x € X. Fix a point z € X and let 6§ = £'(z)
and 4¢ = 1 — 0. Then there are open neighborhood N of
f(z) and an element U € % such that f~'(N)[e +4,1] C
U. The set W = Y \ f(X \ & *((e +6,1])) is an open
neighborhood of f(z). Put y = f(z) and V, = W N N.
Then the collection ¥ = {V, | y € Y} is a required open
cover of Y. O
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We may assume that %y < ¥ without loss of generality.

Lemma 2.3. There exist an open cover Ux of X and a
sequence {t; : X — (0,1) | i € N} of maps with t;11(x) <
ti(x) and lim;_, o t;(x) =0, Vo € X, such that

() {c; (V)N X[t2,1] | U € %} < % and
(2) {Utigo,ti] | U € Ux} <%, Vi € N.

Proof. For each z € X, we define 7/(x) as the supremum
of s € (0,1] such that, for each t € [0,271(£(z) + 1)], there
is an element U € % such that {z} x ([t—s,¢]N[0,1]) C U.
Then the function v'(z) is well-defined by the compactness
of the interval [0,271(¢£(x) +1)]. Also, it follows that /()
is lower semi-continuous.

Let ~
min{2714/(z), &(z)} for every x € X. Then we define the

: X — (0,1) be a map such that v(z) <
sequence of maps t; > to > t3 > --- as follows: Define
ta() = £(z) and t1(z) = €(2) + min{3 (), 2~ (1 — ta(2))}.
For i > 3, define ¢;(x) = t;_1(x) — min{y(z),271t;_1(z)}.
Then t;41(z) < ti(xz) and lim; o t;(z) =
ery x € X. Since c;l(U) N X[t2,1] = 7Y U)[t2,1]
for every U € % and % < ¥, the condition (1)

0 for ev-

is satisfied by Lemma 2.2. It is now obvious that
ti(x) — tiv1(z) < y(x) < 2719/ (z). By the definition of &,
each point x € X has an open neighborhood U, such that
Ugltito,t;] is contained in some element U; € % for each
i € N. Thus the open cover Zx = {U, | z € X} satisfies

the condition (2). O

For each y € Y, put F, = 871(y). Recall that M(f)\
Y = X|[0,1) and let px : X[0,1) — X be the projection.

Lemma 2.4. There exists a sequence {s; : X — (0,1) |
i € N} of maps with s,;41(x) < si(z) andlim;_, s;(z) = 0,

Vo € X, such that, for each non-degenerate fiber F,,

(1) if FyNX]|0,s1] # 0 then F,, C X[0,1) and px(F,) CU
for some U € Ux,

(2) if FynNX|[s1,1] #0 then F, C X(s2,1],

(3) if Fy N X[s1,1] = 0 then F, C X(si12,s;) for some
1€ N.

Proof. For each x € X, let 8, denote the point 3((x,0)).
Let U, be an element of %y such that x € U, and let V,,
be an open neighborhood of (z,0) € M(f) such that z €
Ve C px'(Uz) C X[0,1) € M(f). Since j3 is a proper map
and fully injective on X[0], the point 3, is not contained in
the closed set 3(X][0,1] \ V,.). Hence we can take an open
neighborhood W, of 8, in Y so that W, C Y\ 5(X]0,1]\
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V). Then 8~1(W,) is an open neighborhood of = in X[0, 1]
such that 3~ (W,) C px'(Us) C X[0,1).

Put W = UpexW,. Then W is an open neighborhood
of B(X]0]) in Y such that 3=}(W) C X[0,1). Let U be an
open neighborhood of B(X|0]) in Y such that 8(X[0]) C
UcUcCW. Put G; = B~1(U). Then ~L(B(G1)) = G1
and G; C B~Y(U) C X|[0,1). We define a function s} :
X — (0,1) by si(z) = sup{s € (0,1) | {=}[0,s] C Gi}.
Now it is obvious that s is a well-defined and lower semi-
continuous function.

Let s7 : X — (0,1) be a map such that s;(z) <
min{s}(z),27!} for every z € X. Let y = B, € Y.
It F, =
F, N X[0,51] # 0, then F, C B7'(W) C X[0,1).
Since y = B, € W, and B~Y(W,) C px'(Us), we have
px(Fy) C U, € Ux, i.e., the condition (1) is satisfied.

B~ Y(y) is a non-degenerate fiber with

By the same manner, we can take a neighborhood G2 of
X[0] such that 871(8(Gs)) = G2 and Gy C X[0,s1). And
we take the lower semi-continuous function s} : X — (0,1)
defined by s5(x) = sup{s € (0,1) | {«}[0,s] C G2} and a
map sz : X — (0,1) with s2(z) < min{s}(x),272}. Then
the condition (2) is satisfied.

Inductively, as above, we construct an open neighbor-
hood G; of X[0] and a map s; : X — (0,1) so that
B7HB(Gy)) = Gy, si < 27" and X[0,8;) C G; C X[0,8,_1).
Then the condition (3) is satisfied. O

Let sg, to : X — [0,1] be the constant map so(z) =
to(z) = 1. Let b’ : X x [0,1] = X X [0, 1] be the homeo-
morphism that maps every interval {z} X [t;+1(z), t;(z)] lin-
early onto the corresponding interval {z} x [s;4+1(2), s;(x)].
Then we obtain the homeomorphism h : M(f) — M(f)
induced by &’ sliding the [0, 1]-factor, i.e., ¢y o h = ¢;.

Let y € Y and take an element U, € % sothaty € U, €
%y . Now we suppose that the fiber (8oh)™!(y) = h™1(F,)
is non-degenerate. If F, N X [s1,1] # 0 then F, C X (s,1]
by Lemma 2.4 (2). Then, by Lemma 2.3 (1), h=1(F,) C
cj?l(Uy)[tg7 1] which is contained in some element of 7. In
case Fy N X[s1,1] = 0, we have F, N X[0,s1] # 0, that
is, there is an element U € %x such that px(Fy) C U by
Lemma 2.4 (1).
by Lemma 2.4 (3).

Also, F, C X(sit1,s;) for some i € N
Then h='(F,) C Ultit1,t;] which is
contained in some element of % by Lemma 2.3 (2). Thus

the fibers of 5o h refines % . This completes the proof. O

Lemma 2.5. If f : X — Y is a proper map then the
collapsing map cy : M(f) = Y is also a proper map. O
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Corollary 2.6. If f : X — Y is a proper map and 3 :
M(f) =Y is a map with c; = o« for some map « :
M(f) = M(f), then 8 is a proper map. O

Theorem 2.7 (Bing’s Shrinking Criterion (cf. [6, Theo-
rem 2.7.1 and Remark 2.8])). A proper surjection f: X —
Y between complete spaces is a near homeomorphism if it

satisifies the following:

() For each open covers % of X and ¥V of Y, there is a
homeomorphism h : X — X such that foh is ¥ -close
to fand {h(f7*(y) |yeY}<%. O

Proposition 2.8 (Edwards’ Trick [1, 2.1]). Let f : X —
Y be a proper surjection between complete spaces and let
¢y M(f) = Y be the collapsing map. Assume that, for
each open cover ¥V of Y, there are a near homeomorphism
a: M(f) = M(f) and a map B : M(f) — Y which is
¥ -close to ¢y and fully injective on X x {0} such that cy =

Boa. Then cy is a near homeomorphism.

Proof. Let %, %y be open covers of M(f) and Y respec-
tively. We shall construct a homeomorphism h : M(f) —
M(f) which is C;I(%y)—close to the identity such that
{(c;oh)"Yy) | y € Y} < %. Note that ¢y is a proper
surjection by Lemma 2.5. Thus the proposition follows
from the Bing’s shrinking criterion 2.7.

Note that the map g is proper by Corollary2.6. We refine
Yy so as to satisfy the condition of Lemma 2.3.

By Lemma 2.2 and Lemma 2.3, there exist an open cover
Ux of X and a sequence {t; : X — (0,1) | i € N} of maps
with t;11(z) < t;(z) and lim;_, o t;(x) = 0, Vo € X, such
that

(1) {C;l(Uy) ﬂX[t27 1] | Uy € %Y} < % and
(2) {Ux[ti+2,ti] | Ux € %X} < %, Vi € N.

Let %y be a star refinement of %x. By Lemma 2.4,
there exists a sequence {s; : X — (0,1) | i € N} of maps
with s;41(2) < s;(x) and lim;_, s;(x) = 0, Vo € X, such

that, for each non-degenerate fiber F,

(3) if F,NX][0,s1] # 0 then F, C X[0,1) and px(F,) CU
for some U € %y,

(4) if Fy N X[s1,1] # 0 then F,, C X(s2,1],

(5) if F, N X[s1,1] = 0 then F, C X(sit2,5;) for some
1€ N.

Let ¥ be an open neighborhood of Y such that st ¥ <
y . Then there are a near homeomorphism « : M(f) —
M(f) and a map 8 : M(f) — Y which is #-close to ¢y
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and fully injective on X x {0} such that ¢y = foa. Let
# be an open cover of M (f) satisfying the following:

(6) {st(Fy,st#)|yeY} < c}l(%y),
(7) st{W e |W C X[0,1)} < px (%) and
(8) st (X[Szurl, Si], st 7//) C X[5i+2, Si,ﬂ, Vi € N.

Let ¢ : M(f) — M(f) be a homeomorphism % -close to
a. Let ¢ : M(f) — M(f) be the sliding homeomorphism
which maps the intervals {z} x [t;11,t;] = {x} X [$2i12, S2i]
and {a}x[t1,1] = {z}X[s2, 1] linearly for every x € X with
cpotp =cy. Wedefine h: M(f) = M(f) by h=¢ torp.
By the condition (1)—(8), one can see that {(cf o h)™*(y) |
y € Y} < % and that ¢y o h is %y-close to ¢;. Thus
the proposition follows from the Bing’s shrinking criterion

2.7. O

3 Nice Maps

The Hilbert cube, the pseudo-interior and the pseudo-
bandary are denoted by Q, s and B(Q) respectively, that
is, @ =112, [-1,1];, s = 1122, (—1, 1);, and B(Q) = Q\ s.
A surjective proper map f : X — Y is called a cell-like
map if f~1(y) is a cell-like compactum for every y € Y.
A completely metrizable space is called an L-space if it is

strongly universal AR.

Definition 3.1. An L-space H is called an ¢5-model space

if it satisfies the following:

e (Stability) H =~ H x Q;

e (Z-set unknotting) For each open cover % of H and a
homeomorphism h : Z; — Z5 between Z-sets Z; and Zs
of H which is supported on some open set U in H and % -
homotopic to the identity, there exists a homeomorphism
h: H — H which is % -homotopic to the identity such
that h [ Z1 = h and supported by U.

One should note that H ~ H x [0, 1] whenever H is an #5-
model space since H & Hx Q ~ Hx Qx[0,1] ~ H x 0, 1].

Lemma 3.2. Let Y be a space and C a compactum. For
each open cover % of 'Y x C, there exists a map v:Y —

(0,1) such that {B((y,¢),v(y)) | (y,c) €Y xC} <% .

Proof. Let » : Y x C — (0,1) be a map such that
{B((y,0),r((y,0)) | (y,¢0) € YV x O} < % (cf [5
2.7.7(2)]). For each y € Y, let £(y) = min{r(y,c) | c € C}.
Then the function £ : Y — (0,1) is well-defined and
lower semi-continuous by the compactness of C. Hence

we can take a map v : Y — (0,1) such that v(y) < £(y)
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for every y € Y. Then the map v satisfies the required

condition. O

Theorem 3.3 (Mapping Replacement Theorem (cf. [6,
3.1.12))). If a complete ANR space X is strongly universal
then X satisfies the followig: For ach open cover % of X,
each complete space Y and a map f :' Y — X such that
the restriction f | A: A — X to a closed subspace A is a
Z-embedding, there is a Z-embedding g :' Y — X which is
an extension of f | A and % -close to f. O

Theorem 3.4 ([5, 7.5.4]). Let f : X — Y be a proper map
between ANRs X and Y. Then f is a cell-like map if and
only if f is a fine homotopy equivalence. O

For a proper map f : X — Y and a closed set A C
Y, X Uy A denotes the quotient space of X obtained by

collapsing the fibers over A to singletons.

Proposition 3.5 ([1, 3.1]). Let H be an l3-model space,
Y an complete AR space and A a closed subset of Y. If
f:H =Y isa cell-like map such that f~1(A) is a Z-set
in H then the quotient map @ : H — H Uy A is a near

homeomorphism and A is a Z-set in H Uy A.

Proof. We shall show that = : H — HUj A is a near home-
omorphism by Bing’s shrinking criterion 2.7. Let % and
¥ be open covers of H and H Uy A respectively. Since f is
a proper map, we can take a collection .7 of open sets in Y’
such that U7 D A and f~Y(7) < 7= 1(¥). Let .% be an
open cover of Y which refines the open cover 7 U{Y \ A}
of Y. Since f is a fine homotopy equivalence (Theorem
3.4), there is a map g : Y — H such that go f is f~1(.%)-
homotopic to 1g. Let %’ be an open star refinement of
both % and f~1(#) such that any %’-close two maps are
f~1(#)-homotopic. Using the strong universality of H,
we obtain a Z-embedding h : f~1(A) — H such that h is
U’-close to go f. Then h is f~!(#)-homotoic to the iden-
tity and h(f~(a)) C st(g(f(f~(a))), %’) = st(g(a), %)
for each a € A. Hence we have {h(f~(a)) |a € A} < %.
By the Z-set unknotting of H, we obtain a homeomor-
phism & : H — H supported by F~H(UT) such that his
FU(F)-close to 1y with h | f~1(A) = h | f~1(A). Since
{h(f~2(a)) | a € A} = {h(f(a)) | a € A} < % and the
non-degenerate fibers of 7 is the set {f~!(a) | a € A}, we
have {h(7~!(z)) | # € H Uy A} < % . Hence the quotient
map 7 is a near homeomorphism by the Bing’s shrink-
ing criterion 2.7. Using a homeomorphism H — H Uy A

sufficiently close to 7, one can see that A is a Z-set in
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HUfA. O

Corollary 3.6 ([1, 3.2]). Let H be an f3-model space,
f:H =Y a cell-like map and Y a complete AR space.
Then the quotient map m : H x [0,1] = M(f) is a near

homeomorphism.

M(f).

In particular, H is homeomorphic to

Proof. Note that the map f xid: H x [0,1] =Y x [0,1] is
cell-like and Y x [0, 1] is a complete AR space. Let A =Y x
{1} and note that (H x [0,1])Ufxia A = M(f). Then Aisa
closed set in H x [0, 1] and the set (f xid)~}(A) = H x {1}
is a Z-set in H x [0,1] (cf. Lemma 3.2). Hence the quotient
map 7 : H % [0,1] = (H x [0,1]) Ugxia A = M(f) is a near
homeomorphism by Proposition 3.5. By the stability of H,
we have H = H x [0,1] = M(f). O

Lemma 3.7. Let f : X — Y be a proper map and let C
be a compactum. Then a map g = (g9y,9¢0) : X =Y xC
is proper if and only if the map gy : X — Y is proper. [

Lemma 3.8. Let Y be a complete space and let

f = (fY7fQ)

open cover U

: X = Y x Q be a map. For each
of Y x Q,
maps o, B : X — Q such that the maps fo = (fy,a),
fa = (fy,B) : X = Y x Q are %-close to [ with

fa(X) CY x B(Q) and f3(X) CY x 5.

there exists a one-to-one

Proof. Let f = (fy,fo) : X = Y x Q be a map and let
% be an open cover of Y x Q. By Lemma 3.2, we take
a continuous map v : Y — (0,1) so that {B((y,c),v(y)) |
(y,0) e Y xC} < %. Foreachi e N, let V; = {y € YV |
v(y) > 27"} and X; = f;,1(V;). Since a is continuous, X;
and Y; are closed in X and Y respectively. In particular,
the family {X;}2, satisfies the conditions X; C int Xy C
and X = U2, X;.

Let Xo =0 and fo = fo. We shall inductively construct

XoC---CX; i CcimbX; CcX;C---

a sequence of maps f; : X — Q satisfying the following:

(1) fi I Xim1 = fimr | Xia,

(2) fi I X \int X; 41 =1id,

(3) fi I X; is one-to-one,

(4) A(fu fi—1) <2772 and

(5) fi(X;) is a Z-set in Q with f;(X;) € B(Q),

where f;(X;) is the closure of f;(X;) in Q.
Assume f;_1 : X — Q has been constructed. Let K; 1
and K; be the closures of f;_1(K;_1) and f;_1(K;) in Q re-

spectively, that is, K;—1 = f;—1(X;—1) and K; = f;—1(X;).

Since K;_1 is a Z-set in Q, there exists a Z-embedding
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g: K; — Q such that g | K;_; = id and 2% 3-homotopic
to the identity [4, 5.3.11]. Since B(Q) is a capset in Q and
K;_1 is a Z-set contained in B(Q), there exists a homeo-
morphism h € H(Q) such that h [ g(K;,—1) =h [ K;—1 =
id, h(g(K;)) C B(Q) and h is 2~*~3-homotopic to the iden-
tity [4, 5.4.2]. Since hog : K; — Q is a Z-embedding
which is 27*"2-homotopic to the identity, we have a 277~ 2-
homotopy H : Q% [0,1] — Q, Hy =id and H; = hog. Let
F: X x[0,1] = Q be the pull-back of H by f;_1, that is,
the map defined by F(z,t) = H(fi—1(z),t). Then F is a
2~"=2_homotopy such that Fy = f;_; and F} = hogo f;_1.
Since X; and X \int X, are disjoint closed sets in X, there
is a Urysohn map A : X — [0,1] such that A\(X;) = {1}
and A(X \ intX;41) = {0}. Then the map f; : X — Q
defined by f;(z) = F(z,A(z)), x € X is a required one.

Now we consider the uniform limit o = lim; , f; :
X — Q. Obviously, « is a well-defined continuous map.
For z € X; \ X;_1, we note that f;_s(xz) = fo(x) and
the point moves at most twice by f;—1 and f; until
the limit point «(z). Hence, for z € X; \ X;_1, we
have d(z,a(z)) = d(z, fi(z)) < d(fi—2(2), fi-1(z)) +
d(fi—1(z), fi(z)) < 2771 4 272 < 27% Moreover, it
follows from (3) that a : X — @ is a one-to-one map. It is
obvious that the map fo = (fy,a) : X — Y x Q satisfies
the condition f,(X) C Y x B(Q).
fa is %-close to f since d(a | X; \ X;_1, id) < 27

To construct a map f : X — @ with the property that
fa=(fy,p): X =Y x Qis %-close to f and fz(X) C

Y x s, we only need slight modifications of the arguments

Also, we can see that

above. We consider the pseudo-interior s instead of B(Q),
and construct a sequence of maps { f; } satisfying conditions

(1)-(4) and

(5) fi(X;) is a Z-set in Q with f;(X;) Cs,

In the inductive step, we use the property of the pseudo-
interior s insted of B(Q) to obtain a homeomorphism h €
H(Q) suchthat h [ g(K;—1) =h | K;—1 =id, h(g(K;)) C s
and h is 27~3-homotopic to the identity [4, 5.3.5]. Then we
can obtain the uniform limit map 8 = lim; , o f; : X — Q

which satisfies the required conditions. O

Corollary 3.9. Let X and Y be complete spaces. For each
proper map f: X — Y xQ and an open cover % of Y x Q,
there are closed embeddings fo, fz: X =Y x Q which are
U -close to f with fo(X) CY x B(Q) and fzg(X) CY xs.

Proof. We define f, and fz as in Lemma 3.8. Then the

maps f, and fg are closed embedding by Lemma 3.7 since
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f is a proper map. O

Let f: X — Y be a map and let ¢y : M(f) = Y be the
collapsing map. We say f is a nice map if, for each open
cover % of Y, there is a closed embedding g : Y — Y such
that g is % -close to the identity and c}l(g(Y)) is a Z-set
in M(f).

Proposition 3.10. For a proper map f: X — Y between
complete spaces X andY , the map fx1lg: X xQ =Y xQ

1S a nice map.

Proof. First we note that the mapping cylinder M (f x 1g)
can be written as M(f) x Q. And the collapsing map
Cixig @ M(f x 1g) = Y x Q is written by ¢; x 1g :
M(f)xQ — Y xQ, where ¢y : M(f) — Y is the collapsing
map. Then the statement follow by Corollary 3.9. O

Proposition 3.11 ([1, 3.3]). Let H be an {3-model space
and Y an L-space. If f : H — Y 1is a nice cell-like map
then the collapsing map cy : M(f) — Y is a near homeo-

morphism.

Proof. We use the notation H[0] = H x {0} € M(f) =
HJ0,1] as in section 2. To see that ¢y is a near homeomor-
phism, we shall use the Edwards’ strategy 2.8. Let ¥ and
¥ be open covers of Y such that st2¥”’ < #. Since f is
a nice map and Y is strongly universal, there is a closed
embedding g : H[0] — Y which is ¥”-close to ¢y | HI0]
such that c}l(lm g) is a Z-set in M (f). By Corollary 3.6,
M(f) is homeomorphic to H. Let A =Img C Y. Since
f is a cell-like map, ¢y : M(f) = Y is a cell-like map
such that C;I(A) is a Z-set in M(f). Then the quotient
map 7 : M(f) — M(f) U, A is a near homeomorphism
and A is a Z-set in M(f) U., A by Proposition 3.5. Let
qr : M(f) U, A = Y be the projection and let % be
an open star refinement of qj?l(7/ ). Take a homeomor-
phism A : M(f) — M(f)U., A which is %-close to 7. Let
g+ H[0] = A C M(f)Uc, A be the embedding induced by
g. Thus, gfog’ = g and ¢ is q;1(7/’)—close tow | H[0].
Then h™' o ¢’ : H[0] — h™'(A) is a homeomorphism be-
tween Z-sets in M(f) ~ H which is c}l(st ¥')-close to
the identity. Indeed, cfoh™log = gromoh oy
is #'-close to qgf o hoh™log = gy og which is ¥'-
close to gy om = cy. Using Z-set unknotting, there is a
homeomorphism ~ : M(f) — M(f) which is c}l(st v')-
close to the identity such that v | H[0] = h~! o ¢’. Then
hovy:M(f)— M(f)U., Aisahomeomorphism which is
qj?l(st2“//’)-close to the identity such that ho~y(H[0]) = A.
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Put @ = (hoy) tom: M(f) = M(f) and B=gqsoho~y:
M(f) =Y. Then foa=gsom =cy and § is ¥-close to
¢y since st27' < ¥. Also we have B(H[0]) = qf(A4) = A.
Then f is fully injective on H[0] since q;l (A) = A and hoy
is a homeomorphism with h o~ [ H[0] = ¢’ : h[0] — A.

Thus ¢y is a near homeomorphism by Proposition 2.8. [

Lemma 3.12. Let X be a strongly universal com-
plete space and C a compactum. Then the projection

px : X x C — X is a nice map.

Proof. Let ¢,
note that M(px) =~ X x cone(C). Let f: X — X be a Z-

: M(px) — X be the collapsing map and

embedding sufficiently close to the identity. Then one can
see that the set ¢, ! (f(X)) &~ f(X) x cone(C) is a Z-set in
M(px) ~ X x cone(C) using Lemma 3.2. O

Corollary 3.13. The projection 7y : H x [0,1] — H is a

near homeomorphism whenever H is an f3-model space.

Proof. The identity map 1y : H — H is a nice map by
Lemma 3.12 and M(1y) is homeomorphic to H x [0, 1].
Hence the projection 7y : H x [0,1] — H is a near home-

omorphism by Proposition 3.11. O

Lemma 3.14. Let H be an {3-model space and Y an L-
space. If f: H —'Y is a nice cell-like map then f is a near

homeomorphism.

Proof. The collapsing map ¢y : M(f) — Y, the projec-
tion py : H x [0,1] — H and the quotient map 7 : H X
[0,1] — M(f) are near homeomorphisms by Propositions
3.11, Corollary 3.13 and Propotition 3.6 respectively. Sup-
pose that an open cover % of Y is given. Let ¥ be an
open cover of Y such that st?% < %. We can take a
homeomorphisms « : M(f) — Y which is #-close to ¢y,
B+ H x [0,1] — M(f) which is cJTl(V)-close to 7 and
v : H x [0,1] = H which is f=(¥)-close to py. Then it
follows that oo 8 is st? #-close to f o~. Indeed, for each
x € H, ao f(x) is ¥-close to cf o B(x) which is #-close
cpom(z) and ¢y om(x) = fopu(x) is ¥-close to foy(x).

1

Hence, aofo~y~" is %-close to f. Thus f is a near home-

omorphism. O

Theorem 3.15 ([1, 3.4 (ii)]). Let H be an l2-model space
and Y an L-space. If f: H =Y is a cell-like map then f

is a near homeomorphism.

Proof. The product map f x1g : Hx Q — Y x Qis a
nice cell-like map from an ¢3-model space H x Q@ =~ H by

Proposition 3.10. Hence f x 1g is a near homeomorphism
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by Lemma 3.14. In particular, Y x @ ~ H x Q =~ H. So,
the projections pgy : H x @ - Hand py : Y xQ —- Y
are nice cell-like maps from ¢3-model space onto L-spaces
by Lemma 3.12, whence they are near homeomorphisms by

Lemma 3.14. Thus f is a near homeomorphism. O

4 Cell-like Resolutions

In the following proposition, we assume X to be an ANR
though it is not required in the compact setting [1, 4.1].
If we consider the cone over a non-compact space X, we
always treat the metrizable cone C(X), that is, C(X) =
{*}U(X x[0,1)) equipped with the topology that the open
sets of C(X) is generated by the open sets in X x [0,1) and
the sets {*} x (X x (1 —¢,1),0<e< 1.

Proposition 4.1. Let H be an {3-model space and X a
Z-set in H. Suppose that X is an ANR. Then any proper
map [ : X — H can be extended to a cell-like map f: H—
H.

Proof. First we consider the case that f(X)is a Z-set in H.
In this case, using Z-set unknotting of H, we may assume

that X N f(X) = 0 without loss of generality.

Claim 1. There is a Z-set A in H which is an AR con-
taining f(X) with AN X = 0.

Indeed, take a small closed neighborhood F of f(X) in H
such that F N X = (. Then a Z-embeded image of the
metrizable cone C(F) is a required Z-set A (also we use

the Z-set unknotting of H to adjust the location of X).

Using the strong universality of H, we can embed M (f)
as a Z-set in H so that A and X are identified with the
subsets of H. Let ¢y : M(f) — A be the collapsing map.
Put Y = HU., A and let 7 : H — Y be the quotient map.

Claim 2. The quotient map 7 : H — Y is a cell-like map
between ARs.

It is easy to see that ¥ = H U,, A is an ANR [5, 6.5.3].
and 7 is a cell-like since the non-trivial part is equal to ¢y :
M(f) — A. Also, Y is an AR since 7 is a fine homotopy
equivalence (Theorem 3.4). &

By Proposition 3.5, # : H — Y is a near homeomor-
phism and A is a Z-set in Y. Let iy : A — A be the
identity map from A C Y to A C H. Then we can take
a homeomorphism ¢ : Y — H such that g | A = i4. In-
deed, let h : H — Y be a homeomorphism. Since Y is

an f>-model space, there is a homeomorphism [ : Y — H
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such that [ | h(A) = h=! | h(A). Then g = lohis a
required one. Finally, put f =gonm: H— H. Then
fI1X=gof [ X = (g [A)Of:fandclearlyfisa
cell-like map. The case f(X) is a Z-set in H is proved.
Now we consider the general case. Let fo : X — H %[0, 1]
be the map defined by fo(x) = (f(z),0) € H x[0,1]. Then
fo(X) C Hx {0} isa Z-set in H x [0,1] ~ H (we use the
stability of H here). Hence there is a cell-like extension
fo: H — H x [0,1] of fo. Let py : H x [0,1] — H be
the projection. Obviously, py is a cell-like map. Then
the composition py o ﬁ) : H — H is a required cell-like
extension of f since finite composition of cell-like maps
between AN Rs is also a cell-like map [5, 7.5.5]. The proof

is finished. O

Foramap f : X = Y, let fi : X = Y x [1,2] be
the map defined by f.(z) = (f(z),1). Then the mapping
cylinder M (f,) is regarded as the union of M (f) and Y x
[1,2] by identifying Y € M(f) with Y x {1} C Y x [1,2].
We describe the mapping cylinder M (f.) by E(f) and call
E(f) the extended mapping cylinder of f. Let ey : E(f) —
Y be the map defined by ¢y [ M(f) =cf and cy [ Y x
[1,2] = py, where py : Y x[1,2] = Y is the projection. By
pr = E(f) — [0,2] be the projection which maps M (f) onto
[0,1] and Y x [1,2] onto [1,2]. For a < ¢ < b, we sometime
rescale the intervals [0, 1] to [a, ¢] and [1, 2] to [c, b], that is,
pr(M(f)) = [a,c] and pr(E(f)) = [a,b]. In this case, E(f)
is called the extended mapping cylinder over [a,b] relative

to [a, c].

Proposition 4.2 ([1, 4.2]). Let H be an {3-model space.
If r: H— A is a proper retraction then there is a cell-like
map from H onto the extended mapping cylinder E(r) of

r.

Proof. We note that r x1: H x {1} — A x {1} is a proper
retraction between AN Rs. Since H x {1} is a Z-set in H,
there is a cell-like extension f : H x [1,2] — H x [1,2] of
rx 1 by Proposition 4.1. We identify M (r)\ A C E(r) with
H x [0,1). Then we define g : H x [0,2] — E(r) by g |
Hx[0,1) =id and g | H x [1,2] = f. Using the stability of
H, we obtain a cell-like map g : H ~ Hx[0,2] — E(r). O

Proposition 4.3. Let A be a closed subset of a complete
space X. If A is an L-space, then there is a proper retrac-

tionr: X — A.

Proof. Since A x [0,1] is an L-space and A x {0} is a Z-set
in Ax[0,1], there is a Z-embedding f : X — A x [0, 1] such

0
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that f | A is the identity map A — A x {0}. Then pso f:
X — A is a proper retraction where p4 : A x [0,1] — A is

the retraction. O

A retraction r : H — A is called a convenient retraction
if the fat mapping cylinder M (r,) of r is homeomorphic to
H.

Proposition 4.4. Let H be an {5-model space and let r :
H — A be a proper retraction. Then the map r X 1g :

H x Q — A x Q is a proper convenient retraction.

Proof. Sincerx1g : HxQ — Ax Q is a proper retraction
and H x Q ~ H, there is a cell-like map f: H — E(rx1g)
by Proposition 4.2. If E(r x 1g) is an L-space, then f is a
near homeomorphism and the statement follows by Theo-
rem 3.15. It is easy to see that E(r x 1g) is a contractible
ANR, therefore, an AR. So, all we have to see is that
E(r x 1g) is strongly universal. Let % and ¥ be open
covers of E(r x 1g) with st ¥ < % . Suppose that a map
g: X — E(r x1g) from a complete space X is given.
Since f is a fine homotopy equivalence (Theorem 3.4) and
H is strongly universal, we can take a closed embedding
h : X — H such that f o his #-close to g. Using the fact
that E(r x 1g) &~ E(r) x Q, there is a closed embedding
f': H— E(r x 1g) such that f’is ¥-close to f by Corol-
lary 3.9. Then the map ¢’ = foh : X — E(r x 1g) is
a closed embedding of X which is % -close to g. Hence
E(r x 1g) is an strongly universal AR, that is, an L-
space. O

Let » : H — A be a proper retraction. The map-
ping cylinder M (r) over the interval [a,b] is denoted by
M, [a,b]. We use the notation M,[a] = H and M,.[b] = A in
M, [a,b]. If necessary, the sets A x {a}, A x{b} C M,[a,b]
are denoted by Ala], A[b] respectively. By the telescope
M(r,n) of n mapping cylinders of r, we mean the adjunc-
tion space of Ul ; M, [t;_1,t;] obtained by the identifica-
tion of A = M,.[t;] C M,[t;—1,t;] with the subspace At;] C
M, [t;] C M,[t;, ti+1] for every i < n € N, where t; = i/n.
The induced collapsing map and projection of M (r,n) are
denoted by ¢ : M(r,n) — A and p} : M(r,n) — [0,1]
respectively.

Similarly, we define the infinite telescope M(r,c0) of
(mapping cylinders of) r as the adjunction space of
U M, [si—1,s;] using the sequence 0 = sy < 51 <

< s; — oo0. Then the induced collapsing map
M(r,o0) — A
We

and projection are denoted by ¢

and pg° M(r,00) — [0,00) respectively.
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some time describe M(r,n) = U, M,[t;—1,t;] and
M (r,00) = U2 M, [si—1,s;] to indicate the ingredients of

the telescopes.

Proposition 4.5. Let H be an {5-model space. Ifr : H —
A is a proper convenient retraction then M (r,00) is home-

omorphic to the product space H x [0, 00).

Proof. Suppose that M (r,o0) is given by U2, M,.[i — 1,4].
Then (p$°)~1([0,1/2]) is homeomorphic to H x [0,1] ~ H
and (p3°)~!([i+3,i+3]) is homeomorphic to E(r) which is
also homeomorphic to H since r is a convenient retraction.
Applying Z-set unknotting, we obtain a homeomorphism
h: M(r,00) — H x [0,00) which maps (p3°)~1([0,1/2]) to
H x[0,1/2] and maps (p3°) ~([i+3,i+3]) to Hx[i+3,i+3]

for every 1. O

Proposition 4.6 ([1, 4.3]). Let H be an {y-model space
andr : H— A a proper convenient retraction. Then there
is a homeomorphism h : M(r) — M(r,2) such that the
restrictions h | A[0] : A[0] — A[0] C M.,[0, 3] and h | A[1] :
All] — A[l] € M,[1,1] are the identity, where M(r) =
M,[0,1] and M(r,2) = M,[0,3] U M,[%,1]. Moreover, h
can be choosen so that c2oh is U -close to c, for each open

cover U of A.

Proof. Let ¥ and # be coverings of H such that st*# <
¥V < r~Y(%). We use the notation as in section 2, that is,
M(r) = H[0,1]. Then we identify p;'([0, 2]) with H[0, 2
and (p3)~*([0, 2]) with E(r) which is homeomorphic to H
since r is a convenient retraction. With this identification,
E(r) is the extended mapping cylinder of r over [0, %] rela-
tive [%, %] and it is denoted by FE|0, %] Especially, the sub-
spaces H x {0} and H x {2} of E|0, 2] are denoted by E[0]
and E[2] respectively. Let ¢y : E[0, 2] — H be the collaps-
ing map and let py : H[0, %] — H be the projection. Then
cy and py are cell-like maps between f3-model spaces,
whence they are near homeomorphisms by Theorem 3.15.
Let a : E[0,2] - H and 8 : H[0,%] — H be homeomor-
phisms such that o and 8 are #'-close to ¢y and pgy respec-
tively. We define a homeomorphism ~ : H[0, 2] — EJ0, %]
by v =a 'oB. Then cy o~y : H[0,2] — H is st #-close
E[0] — H[0] C H[0,%] and j : E[2] —
H[%] C HJo, %] be the identity maps. Then yoi and vy o j

to pg. Let i :

are c;ll(st W )-close to the identity maps. Hence, there is a
homeomorphism ¢ : E[0, 2] — E[0, 2] which is cj;' (st #)-
close to the identity such that ¢ | v(H[0]) = (yo14)~! and
E1(HIZ]) = (yoj)!. Thenn=Eory: H[O, 5] = E[0, 3]

is a homeomorphism such that cy on is #-close to pgy.
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Moreover, n | H[0] = i~* : H[0] — E[0] and n | H[2] =
j~': H[2] — E[2]. Now we define h : M(r) — M(r,2) by
h | H[0,2] =nand h | H[Z,1] is the natural identifica-
tion of H[2,1] and (p?)~'([3,1]). Then h is a well-defined
homeomorphism such that c2 o h is % -close to ¢, since
¥ <r~1(%). Now it is obvious that h | A[0] and h | A[l]
are the identity map. O

Lemma 4.7. Let f : X — Y be a proper map. For a given
e > 0, there is an open covering % of Y such that the fibers
Y1) and f=1(y2) of % -close two points y1, y2 €Y are

contained in their e-neighborhoods one another.

Proof. Consider the hyperspaces 2% and 2 with the Haus-
dorff metric. Since f is a proper map, A= {f~(y) |y €
Y} is a subspace of 2X. The hyperspace map 2/ maps
A onto the subspace ¥ = {{y} | y € Y} C 2Y. Let
F=2X1A:A—= Y. Then F is in fact a homeomor-
phism. Hence we can take an open cover % of ) so that
FY %) < {Ba, (Ae)| Aec A} O

Let f: X — Y be a proper map and let % be an open
covering of Y. If % satisfies the condition stated in Lemma

4.7, then we say % satisfies the property P(f,¢).

Proposition 4.8 ([1, 4.4]). Let H be an ¢3-model space.
If there is a proper convenitent retraction v : H — A then
it induces a cell-like map ¥ : cone(H) — cone(A) (between

the metrizable cones).

Proof. Tt suffices to construct a cell-like map &

M (r,00) — A x [0, 00) since M (r, c0) is homeomorphic to
H % [0,00) by Proposition 4.5. Then we obtain a cell-like
map ® : H x [0,00) - A x [0,00), whence a cell-like

map U : cone(H) — cone(A) is defined as its one point

compactification.
Let M, (i) be the mapping cylinder of r over [, 55],
i = 1,2,---, and let M,, = U2, M,(¢) be the infinite

telescope of r. Then My = M(r,00) and M, contains
the telescope M(r,n) of n mapping cylinders of r. Let
¢, : M, — A be the collapsing map and p,, : M,, — [0, c0)
the projection. We note that A is an AR as a retract of an
AR space H, whence A is locally contractible. So, we can
take an open covering & of A such that mesh & < 27! and
every element of & can be contracted to a point in some
set with diameter < 271, Since ¢ [ M(r,1) : M(r,1) — A
is a proper map, taking a refinement if necessary, we may

assume that & satisfies the property P(co | M(r,1),271)

by Lemma 4.7. By Proposition 4.6, we can take a homeo-
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morphism f& : My — My such that ¢; o fd is & -close to cg
and f}(Mo(i)) = M;(2i—1)UM;(2i) for every i € N. Sup-
pose that homeomorphisms f! ; : M;_; — M, and open
covers &; of A have been constructed for ¢ = 1,--- ,n. Let

0= fr_ 0.0 fd: Mg — M, be the composition. For
each n € N, we take an open covering &,,4; of A satisfying

the following:

(1) sténi1 < &,

(2) mesh &, 1 < 2= (1),

(3) &1 satisfies the property P(c,off | M(r,n), 2~ ("+1)
and

(4) every element of &,41 can be contracted to a point in

some set with diameter < 2~ (1),

The condition (3) is assured by Lemma 4.7 since ¢, o f§ |
M(r,n) : M(r,n) — A is a proper map. Then, using
Proposition 4.6, we can take a homeomorphism fn*! :

M, — M, 41 such that

(5) cpa1 o frtL: M, — Ais &,11-close to ¢, and
(6) frY(M,(3)) = My11(2i—1) UM, (26) for every i € N.

Let v, : My — A and 7, : My — [0,00) be the collapsing
map and the projection through f3 : My — M, respec-
tively, that is, v, = ¢, o f§ and 7, = p, o f§. Then we

have

(3)" &n41 satisfies the property P(y, | M(r,n),2- (D)
and

(5)" Yny1 is &, y1-close to vy,.

Claim 1. The sequences of maps {7,} and {m,} are uni-

formly convergence.

Indeed, suppose that a point z € My and a number n are

given. Let ¢ be the number such that fJ'(z) € M,(i).

Then m,(z) € [G2, 5] for Vm > n by the condition
(6).
d(yn (@), Yt1(@)) = dlcn o f§(2), cnyr 0 fH o [ (2)) <
2~ ("+1) by condition (5) and (2). Thus, d(v,(2), Ym(z)) <
2=+ /(1 — 21y =277, &

So we have d(m,(z),7m(z)) < 27™. Also, we have

Let v : My — Aand 7 : My — [0, 00) be the uniform lim-
its of {~, } and {m, } respectively. Then we define ® : My —
A x [0,00) by ®(z) = (y(z),7(x)), x € Mp. Similarly, we
define ®,, : My — A x [0,00) by ®,(z) = (v (z), ™ (x)),
x € My, for each n. Clearly, {®,} uniformly convergent to

P, ie., lim, o P, = P.

Claim 2. ¢ is a proper map.

0
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Let K be a compact subset of A x [0,1). Then there
are a compact subset K4 C A and an integer k
such that K C Ka x [0,k]. Note that ®"1(K) C
O UK x [0,K]) € v Y Ka) N a0,k C M(r k).
Similarly, ®;3(K) C v, (Ka) N M(rk). Then
O, | M(r,k): M(r,k) = A x[0,1) is a proper map since
Yn | M(r,k) is a proper map. Thus, ®;!(K) is compact
for every n > k. Suppose n > k and denote the restriction
Yo | M(r, k) by ¢y, : M(r, k) — A for notational simplicity.
By the conditions (3) and (5), the property P(¢,,2~ 1)
implies that dp(¢,'(a),¢,ti(a) < 27D for every
a € A. Hence the family {®,1(K)} is a Cauchy sequence
in 2Mo with lim, e &1 (K) = 1 (K) (c.f. [4, 1.11.2]).

Thus ®~1(K) is compact. &

Now we shall check that ® is a cell-like map. Let z =
(a,t) € A x [0,00) and F = &~ 1(x).

Claim 3. For each n € N, thereis ¢ € N such that fJ}(F) C
M, (i) U M, (i +1).

Indeed, if f§'(F) is contained in three mapping cylinders,
then the diameter of p,, o f*(F) must be greater than
27" for every m > n by (6). Then the limit n(F) =

lim,, o, 7, (F') cannot be the one point ¢. &

Claim 4. For each n € N, v, (z) and v(z) = a are &,_1-
close for every x € F. In particular, 7, (F) is contained in

an element of &,,_».

Suppose m > n and let € F. By (5)', ym () and vy, —1(x)

are &,-close. Then 7,,(z) and v,,—2(x) are &,,_s-close

-

since Vp—1(z) and y,,—2(z) are &,,—1-close and st &,,_1 <
&Em—2. Suppose that v, (z) and y,41(x) are &,4+1-close.
Then v,, () and 7, () are &,-close since v, +1(z) and v, (x)
are &, y1-close and st &,41 < &,. Thus v(z) = a and 7, (z)
are &,_1-close. Hence v, (F') is contained in an element of

st gn—l =< éan_g. <>

Let U be an closed neighborhood of ~,(F) such that
diam U < 27("=2) and =, (F) can be contracted to a point
in U. Suppose that fI'(F) C M, (i) UM, (i +1).

Claim 5. f#(F) can be contracted to a point in ¢, 1(U) N
(M (i) UM, (i + 1)).

Indeed, we contract f§'(F) to vn(F) x {52} c A5
M, (i + 1) by the collapsing map M, (i) U M, (i +1) —
A. The collapsing is done in the set ¢, (U) N (M, (i) U

M,,(i+1)). Then it is contracted to a point in U x {1;'1} C

A[B) € Mo (i +1). o

on
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Since v and 7, are &,_1-close and the diameter of U is
smaller than 2-("=2) the diameter of v(;, *(U)) is smaller
than 2=("=3) Hence F can be contracted to a point in
®~1(B(a,2= (%) x [L, L), Since we take n arbitrary
and @ is a proper map, this means that F' can be contracted

to a point in any neighborhood of itself, that is, ® is a cell-
like map. O

5 Topological characterization of Hilbert space

In this section, the cone over a space X always means the
metrizable cone over X. One should note that the natural
map 7 : X X [0,1] — cone(X) sending X x {1} to the cone
point {*} is a quotient map if X is compact. However, it

is not a quotient map whenever X is not compact.

Proposition 5.1. Let H be an f3-model space and let
cone(H) be the metrizable cone over H. If m: H x [0,1] —
cone(H) is the natural map sending H x {1} to the cone

point {*} then 7 is a near homeomorphism.

Proof. Let % and ¥ be given open covers of H x [0,1]
and cone(H) respectively. We shall construct a homeo-
morphism h : H x [0,1] — H x [0, 1] such that {h(7~!(y)) |
y € cone(H)} < % and wo h is ¥-close to . Then the
statement follows from Bing’s shrinking criterion 2.7. Take
€ > 0 so that the neighborhood {*} U (H x (1 —2¢,1)) is
contained in some element of ¥. Let x € H x (1 —¢,1) C
H x [0,1] be a point and let U be a neighborhood of z in
H x [0,1] which is contained in some element of % . Then
the collapsing map ¢ : H x {1} — {*} can be approxi-
mated by a Z-embedding f : H x {1} - H x [0,1] ~ H
which is homotopic to ¢ in H x (1 —&,1). By the Z-
set unknotting theorem, there is a homeomorphism h :
H x [0,1] — H x [0,1] supported by H x (1 —¢,1) and
hiHx{1}=f. O

Theorem 5.2 (cf. [1, 3.5]).

image of any l2-model space.

Any L-space is a cell-like

Proof. Let A be an L-space and H an f>-model space. We
shall show that A x @ ~ H. Then the projection pa :
A X Q — A is a required cell-like map.

Without loss of generality, we may assume that A is a
closed subset of H. By Proposition 4.3, there is a proper
retraction r : H — A. Then r x 1g : H x Q@ — A x
Q is a proper convenient retraction by Proposition 4.4.
Since H x Q = H, there is a cell-like map ¥ : cone(H) —
cone(A x Q) by Proposition 4.8. Hence ¥ X 1g : cone(H) X
Q — cone(A x Q) x Q is also a cell-like map. One should
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note that cone(A x Q) is an L-space (cf. [5, 6.5.7]) and
cone(H) x Q@ ~ H by Proposition 5.1. So the map ¥ x 1o
is a cell-like map from an £s-model space onto an L-space,
that is, ¥ X 1g : cone(H) x Q@ — cone(A x Q) x Q is a
near homeomorphism by Theorem 3.15. As a result, we
have cone(A x Q) x Q ~ cone(H) x Q ~ H x Q ~ H.
[0,1))x Q —
cone(Ax Q) x Q ~ H, we can see that ((Ax Q) x[0,1])x Q

Considering the natural projection ((A x Q) x

is an H-manifold (locally homeomorphic to open subsets
of H). Hence, the space A x Q ~ ((A x Q) x [0,1]) x Q
is an fo-model space. In fact, the universality follows from
the A’s universality and Z-set unknotting follows from the
[6, 2.5.10]).
cone(A x Q) is homeomorphic to A x Q by Proposition 5.1.
Therefore, A x Q ~ A x Q x Q ~ cone(A x Q) x Q ~ H.
The proof is finished. O

open embedding theorem (cf. So we have

Theorem 5.3 (Characterization of Hilbert space). Any
L-space is homeomorphic to any f2-model space. In partic-
ular, any complete strongly universal AR space is homeo-

morphic to the Hilbert space (5.

Proof. The first part follows from Theorem 3.15 and The-
orem 5.2. The second part follow from the fact that /5 is

an £o-model space. O
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