リチウム-ランタン-チタネートセラミックスの Li 導電特性

中山 享* 川又光** 辻 久巳*** 塩見 正樹*** 朝日 太郎****

Li conduction of lithium-lanthanum-titanate ceramics

Susumu NAKAYAMA* Hikaru KAWAMATA** Hisami TSUJI***

Masaki SHIOMI*** Taro ASAHI****

To improve the lithium ionic conductivity of perovskite-type ceramic $L_{i_{034}La_{051}TiO_{294}}$, the Ti in $L_{i_{034}La_{051}TiO_{294}}$ was partially substituted by Mn, Ge or Si. The grain conductivity (2.0 x 10^{-3} S·cm⁻¹ at 25°C) of $L_{i_{034}La_{051}}Ti_{0994}Si_{0006}O_{294}$ was higher than that (1.1 x 10^{-3} S·cm⁻¹ at 25°C) of $L_{i_{034}La_{051}}TiO_{294}$. The bulk (grain + grain boundary) conductivities of $L_{i_{034}La_{051}}Ti_{0994}Si_{0006}O_{294}$ and $L_{i_{034}La_{051}}TiO_{294}$ at 25°C were 2.2×10^{-5} and 1.7×10^{-5} S·cm⁻¹, respectively.

1. 緒 言

現在、携帯電話、パソコン、電気自動車、ハイブリッド自動 車など多くの製品に、2次電池の中でエネルギー密度と出力が最 も高いリチウムイオン電池が搭載されており、その性能向上の 研究開発が盛んに行われており、その問題点として、電解液と して可燃性の有機溶媒を用いるので、短絡や過充電などを想定 した安全対策が欠かせない。安全性向上のため、固体の中をリ チウム (Li) イオンが動くLiイオン伝導体すなわちLi固体電解 質の開発が進められているが、これまでに報告されている無機 材料系(セラミックス、ガラス、ガラスーセラミックスなど) のLiイオン伝導体のLiイオン導電率は低い値にとどまっている。 実用化可能なLiイオン導電率は室温で10⁻³S·cm⁻¹とされてい るが、2011年7月28日版の「Nature Materials」に掲載された東 京工業大学とトヨタ自動車のグループのLi₁₀GeP₂S₁₂が目標のLi イオン導電率(室温で10⁻³S·cm⁻¹)を達成している。[1] その 他に高いLiイオン導電率を示すものとして、Li₂S-SiS₂-Li₄SiO₄ ガラスやLi₃₂₅Ge_{0.025}P_{0.75}S₄などが知られているが、すべて非酸 化物系であり取り扱いや耐久性などで問題点を抱えている。そ こで、1993年に東京工業大学で発見された酸化物系セラミック スでありABO₃型のペロブスカイト型酸化物で高いLiイオン導 電率を示すリチウムーランタンーチタネートセラミックス (Li_{0.34}La_{0.51}TiO₂₉₄)に注目し、Tiサイトの他元素置換とLiイオ ン導電率の関係を検討した。[2]

2. 実験

2-1 試料作製

基本組成 ($Li_{0.34}La_{0.51}TiO_{2.94}$)の出発原料としては、 Li_2CO_3 、 La_2O_3 、 TiO₂を用いた。Ti 置換元素成分原料としては、 MnO_2 、GeO₂、SiO₂ を用いた。それらを所定組成になるように、20g配合した。配合 物は、ジルコニア容器とジルコニアボールを用いた遊星型ボー

平成 24 年 9 月 20 日受付 (Received Sept. 20, 2012)

****新居浜工業高等専門学校環境材料工学科(Department of Environmental Materials Engineering, Niihama National College of Technology, Niihama-shi, 792-8580, Japan)

^{*}新居浜工業高等専門学校生物応用化学科(Department of Applied Chemistry and Biotechnology, Niihama National College of Technology, Niihama, 792-8580, Japan)

^{**}新居浜工業高等専門学校生物応用化学科(Department of Applied Chemistry and Biotechnology, Niihama National College of Technology, Niihama, 792-8580, Japan) 現所属: ㈱西条環境分析センター、西条市(Present address: Nagaoka University of Technology, Nagaoka, 940-2188, Japan)

^{***}新居浜工業高等専門学校ものつくり教育支援センター (Manufacturing Education Support Center, Niihama National College of Technology, Niihama, 792-8580, Japan

Fig.1 代表的な無機系Liイオン伝導体のLiイオン導電率.

ルミル中で、3時間湿式混錬を行った。このとき、溶媒には純水を 用いた。100℃で乾燥後、Al₂O₃るつぼ(㈱ニッカトー製、SSA-H) に詰めて800℃で2時間仮焼を行った。得られた仮焼物はアクリル 系バインダーを添加した後、再度遊星型ボールミルにて2時間湿式 解砕を行った。100℃で乾燥後、100MPaの金型プレス機で φ10 mm の円盤状に成型し、電融ジルコニア粗粉末を敷いた Al₂O₃ セッター 上にて 1200~1400℃の電気炉中にて2時間焼結を行った。

2-2 各種測定

得られた焼結体は、ジルコニア製の乳鉢で粉砕し粉末状とした。 粉末 X 線回折測定は、CuKα 線を用いて、20=30°~60°の範囲で行った。(㈱リガク、MiniFlex II)また、得られた焼結体を乳鉢にて 破砕粉した後、得られた破断面の微細構造を走査型電子顕微鏡にて 観察した。(㈱日立ハイテクノロジーズ、TM1000)

焼結体の両面に Ag ペースト (藤倉化成㈱、ドータイト XA-412PHV)を塗り、Pt線を付け、180℃乾燥させたものを電極と した。Ag 電極径は φ6mm で、試料厚みは約3 mm とした。導電率 は、インピーダンスメーター (HP4194A)を用いて周波数範囲 100 Hz~10 MHz で測定を行い、複素インピーダンス解析により決定し た。温度調整は、低温恒温水槽(ヤマト科学㈱、BB301)を用いて 行った。

3.結果及び考察

3-1 Li_{0.34}La_{0.51}TiO_{2.94}

Li_{0.34}La_{0.51}TiO_{2.94}のXRD 結果を、**Fig.2**に示す。ペロブスカイト構造(立方晶系)の粉末X線回折パターンを示しており、Li₂CO₃、La₂O₃、TiO₂の未反応物や新たな生成物は観測されなかった。**Fig.3**

にはLi₀₃₄La₀₅₁TiO₂₉₄の電子顕微鏡写真を示すが、1µm角程度の立 方体に近い結晶から形成されており、緻密な微細構造であることが 確認できた。

Fig.2 Li_{0.34}La_{0.51}TiO_{2.94}の粉末X線回折結果.

Fig.3 Li_{0.34}La_{0.51}TiO_{2.94}の破断面の電子顕微鏡写真.

 $Li_{034}La_{051}TiO_{294}$ の 25°Cでの複素インピーダンスプロットを Fig.4 に示す。Fig.4(a)中の矢印(↓)位置を $Li_{034}La_{051}TiO_{294}$ のバルク抵抗 (粒内+粒界)とする仮定すると、その値は 60 kΩ・cm となり、 Fig.1 中に示している $Li_{034}La_{051}TiO_{294}$ の値(1 kΩ・cm)の 60 倍とな る。Fig.4(b)には、Fig.4(a)の高周波数領域での複素インピーダンス プロットを拡大したものを示した。Fig.4(b)の矢印(↓)位置は、 800 Ω・cm であり、この値を $Li_{034}La_{051}TiO_{294}$ のバルク抵抗(粒内+ 粒界)とする仮定すると、Fig.1 中に示している $Li_{034}La_{051}TiO_{294}$ の 値とほぼ一致する。Fig.4(a)の低周波数領域での複素インピーダン スプロット円弧が、粒界抵抗に起因するものか、バルクと電極との 界面抵抗に依存するものか判断が難しい。

Fig.4 25℃でのLi₀₃₄La₀₅₁TiO₂₉₄の複素インピーダンスプロット.

バルクと電極との界面抵抗を除きバルク抵抗(粒内+粒界)のみ を測定する方法として、**Fig.5** に示す直流四端子法がある。その直 流四端子法で測定した $Li_{0.34}La_{0.51}TiO_{294}$ の 25°Cでのバルク抵抗(粒 内+粒界)は、62 kΩ・cm であった。この値は、**Fig.4(a)**に示す $Li_{0.34}La_{0.51}TiO_{294}$ の 25°Cでの複素インピーダンスプロットの高周波 数領域での複素インピーダンスプロットと円弧低周波数領域での 複素インピーダンスプロット円弧を足し合わせた **Fig.4(a)**中の矢印 (↓)位置の値とほぼ一致した。よって、**Fig.4(a)**中の矢印(↓) 位置の値をバルク抵抗(粒内+粒界)と判断した。

Fig.5 直流四端子法の概念図.

3-2 Li_{0.34}La_{0.51}Ti_{0.995}X_{0.005}O_{2.94} (X=Mn, Ge)

Li₀₃₄La₀₅₁TiO₂₉₄中のTiの一部を同じ4価のMnとGeに置換した 場合の粉末 X 線回折パターンをそれぞれ Fig.6 に示す。 Li₀₃₄La₀₅₁Ti₀₉₉₅X₀₀₀₅O₂₉₄ (X=Mn、Ge)には、Li₂CO₃、La₂O₃、TiO₂、 MnO₂、GeO₂の未反応物や新たな生成物は観測されず、ペロブスカ イト構造(立方晶系)を維持していた。

Fig.6 Li_{0.34}La_{0.51}Ti_{0.995}X_{0.005}O_{2.94} (X=Mn、Ge) の粉末 X 線回折結果.

Li₀₃₄La₀₅₁Ti₀₉₉₅Mn₀₀₀₅O₂₉₄とLi₀₃₄La₀₅₁Ti₀₉₉₅Ge₀₀₀₅O₂₉₄の25℃での 粒内導電率は、それぞれ1.8×10³S・cm⁻¹と2.0×10³S・cm⁻¹であり、 Li₀₃₄La₀₅₁TiO₂₉₄の1.1×10³S・cm⁻¹より高い導電率を示し、Tiの一 部置換効果が認められた。

高い粒内導電率の向上が認められた Li₀₃₄La₀₅₁Ti₀₉₉₅Ge₀₀₀₅O₂₉₄の SEM 写真を Fig.7 に示すが、Li₀₃₄La₀₅₁TiO₂₉₄よりさらに緻密な微細 構造になっていることが確認できた。

TM-1000 2776

2011/11/18 13:39 L x10k 10 u

Fig.7 Li_{0.34}La_{0.51}Ti_{0.995}Ge_{0.005}O_{2.94}の破断面の電子顕微鏡写真.

3-3 Li_{0.34}La_{0.51}Ti_{1-x}Ge_xO_{2.94} (x=0.001~0.05)

 $Li_{034}La_{051}TiO_{294}$ 中のTiを一部MnとGeで置換することで導電率の向上が認められた $Li_{034}La_{051}Ti_{0995}Mn_{0005}O_{294}$ と $Li_{034}La_{051}Ti_{0995}Ge_{0005}O_{294}$ のうち、より高い粒内導電率の向上を示した $Li_{034}La_{051}Ti_{0995}Ge_{0005}O_{294}$ のGe置換量を変更し、TiのGe置換量と粒内導電率の関係を検討した。Table 1に $Li_{034}La_{051}Ti_{1:x}Ge_xO_{294}$ のGe 置換量 (x)と粒内導電率の関係を示すが、高い粒内導電率はx=0.01付近で得られた。

Table 1 Li₀₃₄La₀₅₁Ti_{1-x}Ge_xO₂₉₄ (x=0.001~0.05) の 25℃での粒内導 電率

	$\sigma/S \cdot cm^{-1} (25^{\circ}C)$
Li _{0.34} La _{0.51} Ti _{0.999} Ge _{0.001} O _{2.94}	1.30×10^{-3}
Li _{0.34} La _{0.51} Ti _{0.992} Ge _{0.008} O _{2.94}	1.82×10^{-3}
Li _{0.34} La _{0.51} Ti _{0.99} Ge _{0.01} O _{2.94}	1.97×10^{-3}
Li _{0.34} La _{0.51} Ti _{0.97} Ge _{0.03} O _{2.94}	1.65×10^{-3}
Li _{0.34} La _{0.51} Ti _{0.95} Ge _{0.05} O _{2.94}	9.70×10^{-4}
Li _{0.34} La _{0.51} Ti _{0.9} Ge _{0.1} O _{2.94}	9.91×10^{-4}

3-4 Li_{0.34}La_{0.51}Ti_{1-x}Si_xO_{2.94} (x=0.001~0.01)

Ge と同じく4価で14属でありGeよりもイオン半径の小さなSi で、Li₀₃₄La₀₅₁TiO₂₉₄中のTiの置換した場合のSi置換量と粒内導電 率の関係をTable2に示す。最も高い粒内導電率はx=0.006付近で得 られ、Li₀₃₄La₀₅₁Ti₀₉₉₅Ge₀₀₀₅O₂₉₄の粒内導電率とほぼ同程度であった。

Table 2 Li₀₃₄La₀₅₁Ti_{1-x}Si_xO₂₉₄ (x=0.001~0.01) の 25℃での粒内導電率

	$\sigma/S \cdot cm^{-1}$ (25°C)
Li _{0.34} La _{0.51} Ti _{0.999} Si _{0.001} O _{2.94}	1.49×10^{-3}
Li _{0.34} La _{0.51} Ti _{0.998} Si _{0.002} O _{2.94}	1.40×10^{-3}
Li _{0.34} La _{0.51} Ti _{0.996} Si _{0.004} O _{2.94}	1.81×10^{-3}
Li _{0.34} La _{0.51} Ti _{0.994} Si _{0.006} O _{2.94}	1.97×10^{-3}
Li _{0.34} La _{0.51} Ti _{0.992} Si _{0.008} O _{2.94}	1.37×10^{-3}
Li _{0.34} La _{0.51} Ti _{0.99} Si _{0.01} O _{2.94}	1.40×10^{-3}

3-5 Li_{0.34}La_{0.51}Ti_{0.994}Si_{0.006}O_{2.94}のバルク抵抗(粒内+粒界)

 $Li_{034}La_{051}Ti_{0994}Si_{0006}O_{294}$ を用いて、3-1.で記述したバルク抵抗(粒 内+粒界)について今一度検討した。Fig.5 に示す直流四端子法で 測定した $Li_{034}La_{051}Ti_{0994}Si_{0006}O_{294}の25$ ℃でのバルク抵抗(粒内+粒 界)は、150 k Ω ・cm であった。この値は、Fig.8 に示す $Li_{034}La_{051}Ti_{0994}Si_{0006}O_{294}の25$ ℃での複素インピーダンスプロットの 高周波数領域での複素インピーダンスプロットと円弧低周波数領 域での複素インピーダンスプロット円弧を足し合わせた Fig.8(a)中 の矢印(↓)位置の値と一致し、この値をバルク抵抗(粒内+粒界) と判断した。

Fig.8 25℃での Li₀₃₄La₀₅₁Ti₀₉₉₄Si₀₀₀₆O₂₉₄の複素インピーダンスプ ロット.

4. 結 言

優れた Li イオン導電体と知られているペロブスカイト型構造を 有するリチウムーランタンーチタネート Li₀₃₄La₀₅₁TiO₂₉₄ セラミッ クスの Li イオン導電特性の向上を目的として、Ti の一部を他元素 にて置換して Li イオン導電率に与える影響を調べたところ、以下 のことがわかった。

 従来報告されている室温でのLi₀₃₄La₀₅₁TiO₂₉₄の導電率(25℃ での導電率:1.1×10³S·cm⁻¹)は、粒内導電率を示している ものと考えられる。実際のバルク抵抗(粒内抵抗+粒界抵抗) は粒内抵抗のみの 60 倍程度であり、バルク抵抗の大部分は粒界抵抗であることがわかった。

 2. 粒内導電率についてみると、Li₀₃₄La₀₅₁TiO₂₉₄中のTiサイトを 0.006 モルのSiで置換した場合(Li₀₃₄La₀₅₁Ti₀₉₉₄Si₀₀₀₆O₂₉₄)、 その粒内導電率は25℃で2.0×10³S・cm⁻¹であり、約2倍の向 上が認められた。また、25℃でのバルク抵抗(粒内抵抗+粒 界抵抗)も、Li₀₃₄La₀₅₁TiO₂₉₄が1.7×10⁵S・cm⁻¹であるのに対 し、Li₀₃₄La₀₅₁TiO₂₉₄は2.2×10⁵S・cm⁻¹と1.3倍高かっ た。

参考文献

N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui, "A lithium super ionic conductor", *Nature Materials*, **10(9)**, 649-50 (2011).

[2] Y. Inaguma, "Fast percolative diffusion in lithium ion-conducting perovskite-type oxides", *Journal of the Ceramic Society of Japan*, **114(12)**, 1103-1110 (2006).